Logo Search packages:      
Sourcecode: blender version File versions  Download package

btCollisionWorld.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btCollisionWorld.h"
#include "btCollisionDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"

#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btStackAlloc.h"

//#define USE_BRUTEFORCE_RAYBROADPHASE 1
//RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation'  or 'updateAabbs' before using a rayTest
//#define RECALCULATE_AABB_RAYCAST 1

//When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"


btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
:m_dispatcher1(dispatcher),
m_broadphasePairCache(pairCache),
m_debugDrawer(0)
{
      m_stackAlloc = collisionConfiguration->getStackAllocator();
      m_dispatchInfo.m_stackAllocator = m_stackAlloc;
}


btCollisionWorld::~btCollisionWorld()
{

      //clean up remaining objects
      int i;
      for (i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* collisionObject= m_collisionObjects[i];

            btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
            if (bp)
            {
                  //
                  // only clear the cached algorithms
                  //
                  getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
                  getBroadphase()->destroyProxy(bp,m_dispatcher1);
                  collisionObject->setBroadphaseHandle(0);
            }
      }


}










void  btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask)
{

      //check that the object isn't already added
            btAssert( m_collisionObjects.findLinearSearch(collisionObject)  == m_collisionObjects.size());

            m_collisionObjects.push_back(collisionObject);

            //calculate new AABB
            btTransform trans = collisionObject->getWorldTransform();

            btVector3   minAabb;
            btVector3   maxAabb;
            collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb);

            int type = collisionObject->getCollisionShape()->getShapeType();
            collisionObject->setBroadphaseHandle( getBroadphase()->createProxy(
                  minAabb,
                  maxAabb,
                  type,
                  collisionObject,
                  collisionFilterGroup,
                  collisionFilterMask,
                  m_dispatcher1,0
                  ))    ;





}



void  btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
{
      btVector3 minAabb,maxAabb;
      colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
      //need to increase the aabb for contact thresholds
      btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold);
      minAabb -= contactThreshold;
      maxAabb += contactThreshold;

      btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;

      //moving objects should be moderately sized, probably something wrong if not
      if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
      {
            bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
      } else
      {
            //something went wrong, investigate
            //this assert is unwanted in 3D modelers (danger of loosing work)
            colObj->setActivationState(DISABLE_SIMULATION);

            static bool reportMe = true;
            if (reportMe && m_debugDrawer)
            {
                  reportMe = false;
                  m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
                  m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
                  m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
                  m_debugDrawer->reportErrorWarning("Thanks.\n");
            }
      }
}

void  btCollisionWorld::updateAabbs()
{
      BT_PROFILE("updateAabbs");

      btTransform predictedTrans;
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];

            //only update aabb of active objects
            if (colObj->isActive())
            {
                  updateSingleAabb(colObj);
            }
      }
}



void  btCollisionWorld::performDiscreteCollisionDetection()
{
      BT_PROFILE("performDiscreteCollisionDetection");

      btDispatcherInfo& dispatchInfo = getDispatchInfo();

      updateAabbs();

      {
            BT_PROFILE("calculateOverlappingPairs");
            m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
      }


      btDispatcher* dispatcher = getDispatcher();
      {
            BT_PROFILE("dispatchAllCollisionPairs");
            if (dispatcher)
                  dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1);
      }

}



void  btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
{


      //bool removeFromBroadphase = false;

      {

            btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
            if (bp)
            {
                  //
                  // only clear the cached algorithms
                  //
                  getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
                  getBroadphase()->destroyProxy(bp,m_dispatcher1);
                  collisionObject->setBroadphaseHandle(0);
            }
      }


      //swapremove
      m_collisionObjects.remove(collisionObject);

}



00227 void  btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
                                btCollisionObject* collisionObject,
                                const btCollisionShape* collisionShape,
                                const btTransform& colObjWorldTransform,
                                RayResultCallback& resultCallback)
{
      btSphereShape pointShape(btScalar(0.0));
      pointShape.setMargin(0.f);
      const btConvexShape* castShape = &pointShape;

      if (collisionShape->isConvex())
      {
//          BT_PROFILE("rayTestConvex");
            btConvexCast::CastResult castResult;
            castResult.m_fraction = resultCallback.m_closestHitFraction;

            btConvexShape* convexShape = (btConvexShape*) collisionShape;
            btVoronoiSimplexSolver  simplexSolver;
#define USE_SUBSIMPLEX_CONVEX_CAST 1
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
            btSubsimplexConvexCast convexCaster(castShape,convexShape,&simplexSolver);
#else
            //btGjkConvexCast convexCaster(castShape,convexShape,&simplexSolver);
            //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
#endif //#USE_SUBSIMPLEX_CONVEX_CAST

            if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
            {
                  //add hit
                  if (castResult.m_normal.length2() > btScalar(0.0001))
                  {
                        if (castResult.m_fraction < resultCallback.m_closestHitFraction)
                        {
#ifdef USE_SUBSIMPLEX_CONVEX_CAST
                              //rotate normal into worldspace
                              castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
#endif //USE_SUBSIMPLEX_CONVEX_CAST

                              castResult.m_normal.normalize();
                              btCollisionWorld::LocalRayResult localRayResult
                                    (
                                          collisionObject,
                                          0,
                                          castResult.m_normal,
                                          castResult.m_fraction
                                    );

                              bool normalInWorldSpace = true;
                              resultCallback.addSingleResult(localRayResult, normalInWorldSpace);

                        }
                  }
            }
      } else {
            if (collisionShape->isConcave())
            {
//                BT_PROFILE("rayTestConcave");
                  if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
                  {
                        ///optimized version for btBvhTriangleMeshShape
                        btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
                        btTransform worldTocollisionObject = colObjWorldTransform.inverse();
                        btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
                        btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();

                        //ConvexCast::CastResult
                        struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
                        {
                              btCollisionWorld::RayResultCallback* m_resultCallback;
                              btCollisionObject*      m_collisionObject;
                              btTriangleMeshShape*    m_triangleMesh;

                              BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
                                    btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*      triangleMesh):
                  //@BP Mod
                                    btTriangleRaycastCallback(from,to, resultCallback->m_flags),
                                          m_resultCallback(resultCallback),
                                          m_collisionObject(collisionObject),
                                          m_triangleMesh(triangleMesh)
                                    {
                                    }


                              virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
                              {
                                    btCollisionWorld::LocalShapeInfo    shapeInfo;
                                    shapeInfo.m_shapePart = partId;
                                    shapeInfo.m_triangleIndex = triangleIndex;

                                    btCollisionWorld::LocalRayResult rayResult
                                    (m_collisionObject,
                                          &shapeInfo,
                                          hitNormalLocal,
                                          hitFraction);

                                    bool  normalInWorldSpace = false;
                                    return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
                              }

                        };

                        BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,triangleMesh);
                        rcb.m_hitFraction = resultCallback.m_closestHitFraction;
                        triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal);
                  } else
                  {
                        //generic (slower) case
                        btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;

                        btTransform worldTocollisionObject = colObjWorldTransform.inverse();

                        btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
                        btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();

                        //ConvexCast::CastResult

                        struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
                        {
                              btCollisionWorld::RayResultCallback* m_resultCallback;
                              btCollisionObject*      m_collisionObject;
                              btConcaveShape*   m_triangleMesh;

                              BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
                                    btCollisionWorld::RayResultCallback* resultCallback, btCollisionObject* collisionObject,btConcaveShape*     triangleMesh):
                  //@BP Mod
                  btTriangleRaycastCallback(from,to, resultCallback->m_flags),
                                          m_resultCallback(resultCallback),
                                          m_collisionObject(collisionObject),
                                          m_triangleMesh(triangleMesh)
                                    {
                                    }


                              virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
                              {
                                    btCollisionWorld::LocalShapeInfo    shapeInfo;
                                    shapeInfo.m_shapePart = partId;
                                    shapeInfo.m_triangleIndex = triangleIndex;

                                    btCollisionWorld::LocalRayResult rayResult
                                    (m_collisionObject,
                                          &shapeInfo,
                                          hitNormalLocal,
                                          hitFraction);

                                    bool  normalInWorldSpace = false;
                                    return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);


                              }

                        };


                        BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObject,concaveShape);
                        rcb.m_hitFraction = resultCallback.m_closestHitFraction;

                        btVector3 rayAabbMinLocal = rayFromLocal;
                        rayAabbMinLocal.setMin(rayToLocal);
                        btVector3 rayAabbMaxLocal = rayFromLocal;
                        rayAabbMaxLocal.setMax(rayToLocal);

                        concaveShape->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
                  }
            } else {
//                BT_PROFILE("rayTestCompound");
                  ///@todo: use AABB tree or other BVH acceleration structure, see btDbvt
                  if (collisionShape->isCompound())
                  {
                        const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
                        int i=0;
                        for (i=0;i<compoundShape->getNumChildShapes();i++)
                        {
                              btTransform childTrans = compoundShape->getChildTransform(i);
                              const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
                              btTransform childWorldTrans = colObjWorldTransform * childTrans;
                              // replace collision shape so that callback can determine the triangle
                              btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape();
                              collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape);
                              rayTestSingle(rayFromTrans,rayToTrans,
                                    collisionObject,
                                    childCollisionShape,
                                    childWorldTrans,
                                    resultCallback);
                              // restore
                              collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape);
                        }
                  }
            }
      }
}

00419 void  btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
                                btCollisionObject* collisionObject,
                                const btCollisionShape* collisionShape,
                                const btTransform& colObjWorldTransform,
                                ConvexResultCallback& resultCallback, btScalar allowedPenetration)
{
      if (collisionShape->isConvex())
      {
            //BT_PROFILE("convexSweepConvex");
            btConvexCast::CastResult castResult;
            castResult.m_allowedPenetration = allowedPenetration;
            castResult.m_fraction = resultCallback.m_closestHitFraction;//btScalar(1.);//??

            btConvexShape* convexShape = (btConvexShape*) collisionShape;
            btVoronoiSimplexSolver  simplexSolver;
            btGjkEpaPenetrationDepthSolver      gjkEpaPenetrationSolver;
            
            btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver);
            //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
            //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);

            btConvexCast* castPtr = &convexCaster1;
      
      
            
            if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
            {
                  //add hit
                  if (castResult.m_normal.length2() > btScalar(0.0001))
                  {
                        if (castResult.m_fraction < resultCallback.m_closestHitFraction)
                        {
                              castResult.m_normal.normalize();
                              btCollisionWorld::LocalConvexResult localConvexResult
                                                (
                                                      collisionObject,
                                                      0,
                                                      castResult.m_normal,
                                                      castResult.m_hitPoint,
                                                      castResult.m_fraction
                                                );

                              bool normalInWorldSpace = true;
                              resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);

                        }
                  }
            }
      } else {
            if (collisionShape->isConcave())
            {
                  if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
                  {
                        //BT_PROFILE("convexSweepbtBvhTriangleMesh");
                        btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
                        btTransform worldTocollisionObject = colObjWorldTransform.inverse();
                        btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
                        btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
                        // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
                        btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());

                        //ConvexCast::CastResult
                        struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
                        {
                              btCollisionWorld::ConvexResultCallback* m_resultCallback;
                              btCollisionObject*      m_collisionObject;
                              btTriangleMeshShape*    m_triangleMesh;

                              BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
                                    btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btTriangleMeshShape*   triangleMesh, const btTransform& triangleToWorld):
                                    btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
                                          m_resultCallback(resultCallback),
                                          m_collisionObject(collisionObject),
                                          m_triangleMesh(triangleMesh)
                                    {
                                    }


                              virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
                              {
                                    btCollisionWorld::LocalShapeInfo    shapeInfo;
                                    shapeInfo.m_shapePart = partId;
                                    shapeInfo.m_triangleIndex = triangleIndex;
                                    if (hitFraction <= m_resultCallback->m_closestHitFraction)
                                    {

                                          btCollisionWorld::LocalConvexResult convexResult
                                          (m_collisionObject,
                                                &shapeInfo,
                                                hitNormalLocal,
                                                hitPointLocal,
                                                hitFraction);

                                          bool  normalInWorldSpace = true;


                                          return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
                                    }
                                    return hitFraction;
                              }

                        };

                        BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,triangleMesh, colObjWorldTransform);
                        tccb.m_hitFraction = resultCallback.m_closestHitFraction;
                        btVector3 boxMinLocal, boxMaxLocal;
                        castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
                        triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal);
                  } else
                  {
                        //BT_PROFILE("convexSweepConcave");
                        btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
                        btTransform worldTocollisionObject = colObjWorldTransform.inverse();
                        btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
                        btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
                        // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
                        btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());

                        //ConvexCast::CastResult
                        struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
                        {
                              btCollisionWorld::ConvexResultCallback* m_resultCallback;
                              btCollisionObject*      m_collisionObject;
                              btConcaveShape*   m_triangleMesh;

                              BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
                                    btCollisionWorld::ConvexResultCallback* resultCallback, btCollisionObject* collisionObject,btConcaveShape*  triangleMesh, const btTransform& triangleToWorld):
                                    btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
                                          m_resultCallback(resultCallback),
                                          m_collisionObject(collisionObject),
                                          m_triangleMesh(triangleMesh)
                                    {
                                    }


                              virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
                              {
                                    btCollisionWorld::LocalShapeInfo    shapeInfo;
                                    shapeInfo.m_shapePart = partId;
                                    shapeInfo.m_triangleIndex = triangleIndex;
                                    if (hitFraction <= m_resultCallback->m_closestHitFraction)
                                    {

                                          btCollisionWorld::LocalConvexResult convexResult
                                          (m_collisionObject,
                                                &shapeInfo,
                                                hitNormalLocal,
                                                hitPointLocal,
                                                hitFraction);

                                          bool  normalInWorldSpace = false;

                                          return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
                                    }
                                    return hitFraction;
                              }

                        };

                        BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,collisionObject,concaveShape, colObjWorldTransform);
                        tccb.m_hitFraction = resultCallback.m_closestHitFraction;
                        btVector3 boxMinLocal, boxMaxLocal;
                        castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);

                        btVector3 rayAabbMinLocal = convexFromLocal;
                        rayAabbMinLocal.setMin(convexToLocal);
                        btVector3 rayAabbMaxLocal = convexFromLocal;
                        rayAabbMaxLocal.setMax(convexToLocal);
                        rayAabbMinLocal += boxMinLocal;
                        rayAabbMaxLocal += boxMaxLocal;
                        concaveShape->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal);
                  }
            } else {
                  ///@todo : use AABB tree or other BVH acceleration structure!
                  if (collisionShape->isCompound())
                  {
                        BT_PROFILE("convexSweepCompound");
                        const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
                        int i=0;
                        for (i=0;i<compoundShape->getNumChildShapes();i++)
                        {
                              btTransform childTrans = compoundShape->getChildTransform(i);
                              const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
                              btTransform childWorldTrans = colObjWorldTransform * childTrans;
                              // replace collision shape so that callback can determine the triangle
                              btCollisionShape* saveCollisionShape = collisionObject->getCollisionShape();
                              collisionObject->internalSetTemporaryCollisionShape((btCollisionShape*)childCollisionShape);
                              objectQuerySingle(castShape, convexFromTrans,convexToTrans,
                                    collisionObject,
                                    childCollisionShape,
                                    childWorldTrans,
                                    resultCallback, allowedPenetration);
                              // restore
                              collisionObject->internalSetTemporaryCollisionShape(saveCollisionShape);
                        }
                  }
            }
      }
}


struct btSingleRayCallback : public btBroadphaseRayCallback
{

      btVector3   m_rayFromWorld;
      btVector3   m_rayToWorld;
      btTransform m_rayFromTrans;
      btTransform m_rayToTrans;
      btVector3   m_hitNormal;

      const btCollisionWorld* m_world;
      btCollisionWorld::RayResultCallback&      m_resultCallback;

      btSingleRayCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld,const btCollisionWorld* world,btCollisionWorld::RayResultCallback& resultCallback)
      :m_rayFromWorld(rayFromWorld),
      m_rayToWorld(rayToWorld),
      m_world(world),
      m_resultCallback(resultCallback)
      {
            m_rayFromTrans.setIdentity();
            m_rayFromTrans.setOrigin(m_rayFromWorld);
            m_rayToTrans.setIdentity();
            m_rayToTrans.setOrigin(m_rayToWorld);

            btVector3 rayDir = (rayToWorld-rayFromWorld);

            rayDir.normalize ();
            ///what about division by zero? --> just set rayDirection[i] to INF/1e30
            m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0];
            m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1];
            m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2];
            m_signs[0] = m_rayDirectionInverse[0] < 0.0;
            m_signs[1] = m_rayDirectionInverse[1] < 0.0;
            m_signs[2] = m_rayDirectionInverse[2] < 0.0;

            m_lambda_max = rayDir.dot(m_rayToWorld-m_rayFromWorld);

      }

      

      virtual bool      process(const btBroadphaseProxy* proxy)
      {
            ///terminate further ray tests, once the closestHitFraction reached zero
            if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
                  return false;

            btCollisionObject*      collisionObject = (btCollisionObject*)proxy->m_clientObject;

            //only perform raycast if filterMask matches
            if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) 
            {
                  //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
                  //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
#if 0
#ifdef RECALCULATE_AABB
                  btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
                  collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
#else
                  //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
                  const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
                  const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
#endif
#endif
                  //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
                  //culling already done by broadphase
                  //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
                  {
                        m_world->rayTestSingle(m_rayFromTrans,m_rayToTrans,
                              collisionObject,
                                    collisionObject->getCollisionShape(),
                                    collisionObject->getWorldTransform(),
                                    m_resultCallback);
                  }
            }
            return true;
      }
};

00698 void  btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
{
      BT_PROFILE("rayTest");
      /// use the broadphase to accelerate the search for objects, based on their aabb
      /// and for each object with ray-aabb overlap, perform an exact ray test
      btSingleRayCallback rayCB(rayFromWorld,rayToWorld,this,resultCallback);

#ifndef USE_BRUTEFORCE_RAYBROADPHASE
      m_broadphasePairCache->rayTest(rayFromWorld,rayToWorld,rayCB);
#else
      for (int i=0;i<this->getNumCollisionObjects();i++)
      {
            rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
      }     
#endif //USE_BRUTEFORCE_RAYBROADPHASE

}


struct btSingleSweepCallback : public btBroadphaseRayCallback
{

      btTransform m_convexFromTrans;
      btTransform m_convexToTrans;
      btVector3   m_hitNormal;
      const btCollisionWorld* m_world;
      btCollisionWorld::ConvexResultCallback&   m_resultCallback;
      btScalar    m_allowedCcdPenetration;
      const btConvexShape* m_castShape;


      btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans,const btTransform& convexToTrans,const btCollisionWorld* world,btCollisionWorld::ConvexResultCallback& resultCallback,btScalar allowedPenetration)
            :m_convexFromTrans(convexFromTrans),
            m_convexToTrans(convexToTrans),
            m_world(world),
            m_resultCallback(resultCallback),
            m_allowedCcdPenetration(allowedPenetration),
            m_castShape(castShape)
      {
            btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin()-m_convexFromTrans.getOrigin());
            btVector3 rayDir = unnormalizedRayDir.normalized();
            ///what about division by zero? --> just set rayDirection[i] to INF/1e30
            m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0];
            m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1];
            m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2];
            m_signs[0] = m_rayDirectionInverse[0] < 0.0;
            m_signs[1] = m_rayDirectionInverse[1] < 0.0;
            m_signs[2] = m_rayDirectionInverse[2] < 0.0;

            m_lambda_max = rayDir.dot(unnormalizedRayDir);

      }

      virtual bool      process(const btBroadphaseProxy* proxy)
      {
            ///terminate further convex sweep tests, once the closestHitFraction reached zero
            if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
                  return false;

            btCollisionObject*      collisionObject = (btCollisionObject*)proxy->m_clientObject;

            //only perform raycast if filterMask matches
            if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
                  //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
                  m_world->objectQuerySingle(m_castShape, m_convexFromTrans,m_convexToTrans,
                              collisionObject,
                                    collisionObject->getCollisionShape(),
                                    collisionObject->getWorldTransform(),
                                    m_resultCallback,
                                    m_allowedCcdPenetration);
            }
            
            return true;
      }
};



00776 void  btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
{

      BT_PROFILE("convexSweepTest");
      /// use the broadphase to accelerate the search for objects, based on their aabb
      /// and for each object with ray-aabb overlap, perform an exact ray test
      /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical

      

      btTransform convexFromTrans,convexToTrans;
      convexFromTrans = convexFromWorld;
      convexToTrans = convexToWorld;
      btVector3 castShapeAabbMin, castShapeAabbMax;
      /* Compute AABB that encompasses angular movement */
      {
            btVector3 linVel, angVel;
            btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel);
            btVector3 zeroLinVel;
            zeroLinVel.setValue(0,0,0);
            btTransform R;
            R.setIdentity ();
            R.setRotation (convexFromTrans.getRotation());
            castShape->calculateTemporalAabb (R, zeroLinVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
      }

#ifndef USE_BRUTEFORCE_RAYBROADPHASE

      btSingleSweepCallback   convexCB(castShape,convexFromWorld,convexToWorld,this,resultCallback,allowedCcdPenetration);

      m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(),convexToTrans.getOrigin(),convexCB,castShapeAabbMin,castShapeAabbMax);

#else
      /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
      // do a ray-shape query using convexCaster (CCD)
      int i;
      for (i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject*      collisionObject= m_collisionObjects[i];
            //only perform raycast if filterMask matches
            if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
                  //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
                  btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
                  collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
                  AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
                  btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
                  btVector3 hitNormal;
                  if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
                  {
                        objectQuerySingle(castShape, convexFromTrans,convexToTrans,
                              collisionObject,
                                    collisionObject->getCollisionShape(),
                                    collisionObject->getWorldTransform(),
                                    resultCallback,
                                    allowedCcdPenetration);
                  }
            }
      }
#endif //USE_BRUTEFORCE_RAYBROADPHASE
}

Generated by  Doxygen 1.6.0   Back to index