Logo Search packages:      
Sourcecode: blender version File versions

btQuaternion.h

/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/



#ifndef SIMD__QUATERNION_H_
#define SIMD__QUATERNION_H_


#include "btVector3.h"
#include "btQuadWord.h"

/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
00025 class btQuaternion : public btQuadWord {
public:
  /**@brief No initialization constructor */
00028       btQuaternion() {}

      //          template <typename btScalar>
      //          explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
  /**@brief Constructor from scalars */
00033       btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) 
            : btQuadWord(x, y, z, w) 
      {}
  /**@brief Axis angle Constructor
   * @param axis The axis which the rotation is around
   * @param angle The magnitude of the rotation around the angle (Radians) */
00039       btQuaternion(const btVector3& axis, const btScalar& angle) 
      { 
            setRotation(axis, angle); 
      }
  /**@brief Constructor from Euler angles
   * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
   * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
   * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
00047       btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
      { 
#ifndef BT_EULER_DEFAULT_ZYX
            setEuler(yaw, pitch, roll); 
#else
            setEulerZYX(yaw, pitch, roll); 
#endif 
      }
  /**@brief Set the rotation using axis angle notation 
   * @param axis The axis around which to rotate
   * @param angle The magnitude of the rotation in Radians */
00058       void setRotation(const btVector3& axis, const btScalar& angle)
      {
            btScalar d = axis.length();
            btAssert(d != btScalar(0.0));
            btScalar s = btSin(angle * btScalar(0.5)) / d;
            setValue(axis.x() * s, axis.y() * s, axis.z() * s, 
                  btCos(angle * btScalar(0.5)));
      }
  /**@brief Set the quaternion using Euler angles
   * @param yaw Angle around Y
   * @param pitch Angle around X
   * @param roll Angle around Z */
00070       void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
      {
            btScalar halfYaw = btScalar(yaw) * btScalar(0.5);  
            btScalar halfPitch = btScalar(pitch) * btScalar(0.5);  
            btScalar halfRoll = btScalar(roll) * btScalar(0.5);  
            btScalar cosYaw = btCos(halfYaw);
            btScalar sinYaw = btSin(halfYaw);
            btScalar cosPitch = btCos(halfPitch);
            btScalar sinPitch = btSin(halfPitch);
            btScalar cosRoll = btCos(halfRoll);
            btScalar sinRoll = btSin(halfRoll);
            setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
                  cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
                  sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
                  cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
      }
  /**@brief Set the quaternion using euler angles 
   * @param yaw Angle around Z
   * @param pitch Angle around Y
   * @param roll Angle around X */
00090       void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
      {
            btScalar halfYaw = btScalar(yaw) * btScalar(0.5);  
            btScalar halfPitch = btScalar(pitch) * btScalar(0.5);  
            btScalar halfRoll = btScalar(roll) * btScalar(0.5);  
            btScalar cosYaw = btCos(halfYaw);
            btScalar sinYaw = btSin(halfYaw);
            btScalar cosPitch = btCos(halfPitch);
            btScalar sinPitch = btSin(halfPitch);
            btScalar cosRoll = btCos(halfRoll);
            btScalar sinRoll = btSin(halfRoll);
            setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
                         cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
                         cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
                         cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
      }
  /**@brief Add two quaternions
   * @param q The quaternion to add to this one */
00108       SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
      {
            m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
            return *this;
      }

  /**@brief Subtract out a quaternion
   * @param q The quaternion to subtract from this one */
00116       btQuaternion& operator-=(const btQuaternion& q) 
      {
            m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
            return *this;
      }

  /**@brief Scale this quaternion
   * @param s The scalar to scale by */
00124       btQuaternion& operator*=(const btScalar& s)
      {
            m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
            return *this;
      }

  /**@brief Multiply this quaternion by q on the right
   * @param q The other quaternion 
   * Equivilant to this = this * q */
00133       btQuaternion& operator*=(const btQuaternion& q)
      {
            setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
                  m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
                  m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
                  m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
            return *this;
      }
  /**@brief Return the dot product between this quaternion and another
   * @param q The other quaternion */
00143       btScalar dot(const btQuaternion& q) const
      {
            return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
      }

  /**@brief Return the length squared of the quaternion */
00149       btScalar length2() const
      {
            return dot(*this);
      }

  /**@brief Return the length of the quaternion */
00155       btScalar length() const
      {
            return btSqrt(length2());
      }

  /**@brief Normalize the quaternion 
   * Such that x^2 + y^2 + z^2 +w^2 = 1 */
00162       btQuaternion& normalize() 
      {
            return *this /= length();
      }

  /**@brief Return a scaled version of this quaternion
   * @param s The scale factor */
      SIMD_FORCE_INLINE btQuaternion
00170       operator*(const btScalar& s) const
      {
            return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
      }


  /**@brief Return an inversely scaled versionof this quaternion
   * @param s The inverse scale factor */
00178       btQuaternion operator/(const btScalar& s) const
      {
            btAssert(s != btScalar(0.0));
            return *this * (btScalar(1.0) / s);
      }

  /**@brief Inversely scale this quaternion
   * @param s The scale factor */
00186       btQuaternion& operator/=(const btScalar& s) 
      {
            btAssert(s != btScalar(0.0));
            return *this *= btScalar(1.0) / s;
      }

  /**@brief Return a normalized version of this quaternion */
00193       btQuaternion normalized() const 
      {
            return *this / length();
      } 
  /**@brief Return the angle between this quaternion and the other 
   * @param q The other quaternion */
00199       btScalar angle(const btQuaternion& q) const 
      {
            btScalar s = btSqrt(length2() * q.length2());
            btAssert(s != btScalar(0.0));
            return btAcos(dot(q) / s);
      }
  /**@brief Return the angle of rotation represented by this quaternion */
00206       btScalar getAngle() const 
      {
            btScalar s = btScalar(2.) * btAcos(m_floats[3]);
            return s;
      }


  /**@brief Return the inverse of this quaternion */
00214       btQuaternion inverse() const
      {
            return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
      }

  /**@brief Return the sum of this quaternion and the other 
   * @param q2 The other quaternion */
      SIMD_FORCE_INLINE btQuaternion
00222       operator+(const btQuaternion& q2) const
      {
            const btQuaternion& q1 = *this;
            return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
      }

  /**@brief Return the difference between this quaternion and the other 
   * @param q2 The other quaternion */
      SIMD_FORCE_INLINE btQuaternion
00231       operator-(const btQuaternion& q2) const
      {
            const btQuaternion& q1 = *this;
            return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
      }

  /**@brief Return the negative of this quaternion 
   * This simply negates each element */
00239       SIMD_FORCE_INLINE btQuaternion operator-() const
      {
            const btQuaternion& q2 = *this;
            return btQuaternion( - q2.x(), - q2.y(),  - q2.z(),  - q2.m_floats[3]);
      }
  /**@todo document this and it's use */
00245       SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const 
      {
            btQuaternion diff,sum;
            diff = *this - qd;
            sum = *this + qd;
            if( diff.dot(diff) > sum.dot(sum) )
                  return qd;
            return (-qd);
      }

  /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
   * @param q The other quaternion to interpolate with 
   * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q.
   * Slerp interpolates assuming constant velocity.  */
00259       btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
      {
            btScalar theta = angle(q);
            if (theta != btScalar(0.0))
            {
                  btScalar d = btScalar(1.0) / btSin(theta);
                  btScalar s0 = btSin((btScalar(1.0) - t) * theta);
                  btScalar s1 = btSin(t * theta);   
                  return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d,
                        (m_floats[1] * s0 + q.y() * s1) * d,
                        (m_floats[2] * s0 + q.z() * s1) * d,
                        (m_floats[3] * s0 + q.m_floats[3] * s1) * d);
            }
            else
            {
                  return *this;
            }
      }

      static const btQuaternion&    getIdentity()
      {
            static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
            return identityQuat;
      }

      SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }

      
};


/**@brief Return the negative of a quaternion */
SIMD_FORCE_INLINE btQuaternion
operator-(const btQuaternion& q)
{
      return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w());
}



/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q1, const btQuaternion& q2) {
      return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
            q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
            q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
            q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); 
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
      return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
            q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
            q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
            -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); 
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
      return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
            w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
            w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
            -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); 
}

/**@brief Calculate the dot product between two quaternions */
SIMD_FORCE_INLINE btScalar 
dot(const btQuaternion& q1, const btQuaternion& q2) 
{ 
      return q1.dot(q2); 
}


/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
length(const btQuaternion& q) 
{ 
      return q.length(); 
}

/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
angle(const btQuaternion& q1, const btQuaternion& q2) 
{ 
      return q1.angle(q2); 
}

/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
inverse(const btQuaternion& q) 
{
      return q.inverse();
}

/**@brief Return the result of spherical linear interpolation betwen two quaternions 
 * @param q1 The first quaternion
 * @param q2 The second quaternion 
 * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 
 * Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) 
{
      return q1.slerp(q2, t);
}

SIMD_FORCE_INLINE btVector3 
quatRotate(const btQuaternion& rotation, const btVector3& v) 
{
      btQuaternion q = rotation * v;
      q *= rotation.inverse();
      return btVector3(q.getX(),q.getY(),q.getZ());
}

SIMD_FORCE_INLINE btQuaternion 
shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
      btVector3 c = v0.cross(v1);
      btScalar  d = v0.dot(v1);

      if (d < -1.0 + SIMD_EPSILON)
            return btQuaternion(0.0f,1.0f,0.0f,0.0f); // just pick any vector

      btScalar  s = btSqrt((1.0f + d) * 2.0f);
      btScalar rs = 1.0f / s;

      return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}

SIMD_FORCE_INLINE btQuaternion 
shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
{
      v0.normalize();
      v1.normalize();
      return shortestArcQuat(v0,v1);
}

#endif





Generated by  Doxygen 1.6.0   Back to index