Logo Search packages:      
Sourcecode: blender version File versions  Download package

t2sv_4.c

/*
 * Copyright (c) 2003, 2006 Matteo Frigo
 * Copyright (c) 2003, 2006 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sat Jul  1 22:34:32 EDT 2006 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include ts.h */

/*
 * This function contains 24 FP additions, 16 FP multiplications,
 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
 * 37 stack variables, and 16 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle.ml,v 1.24 2006-02-12 23:34:12 athena Exp $
 */

#include "ts.h"

static const R *t2sv_4(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     INT i;
     for (i = m; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * dist), ii = ii + ((2 * VL) * dist), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(ios)) {
        V T2, T6, T3, T5, T1, Tx, T8, Tc, Tf, Ta, T4, Th, Tj, Tl;
        T2 = LDW(&(W[0]));
        T6 = LDW(&(W[TWVL * 3]));
        T3 = LDW(&(W[TWVL * 2]));
        T5 = LDW(&(W[TWVL * 1]));
        T1 = LD(&(ri[0]), dist, &(ri[0]));
        Tx = LD(&(ii[0]), dist, &(ii[0]));
        T8 = LD(&(ri[WS(ios, 2)]), dist, &(ri[0]));
        Tc = LD(&(ii[WS(ios, 2)]), dist, &(ii[0]));
        Tf = LD(&(ri[WS(ios, 1)]), dist, &(ri[WS(ios, 1)]));
        Ta = VMUL(T2, T6);
        T4 = VMUL(T2, T3);
        Th = LD(&(ii[WS(ios, 1)]), dist, &(ii[WS(ios, 1)]));
        Tj = LD(&(ri[WS(ios, 3)]), dist, &(ri[WS(ios, 1)]));
        Tl = LD(&(ii[WS(ios, 3)]), dist, &(ii[WS(ios, 1)]));
        {
             V Tg, Tb, T7, Tp, Tk, Tr, Ti;
             Tg = VMUL(T2, Tf);
             Tb = VFNMS(T5, T3, Ta);
             T7 = VFMA(T5, T6, T4);
             Tp = VMUL(T2, Th);
             Tk = VMUL(T3, Tj);
             Tr = VMUL(T3, Tl);
             Ti = VFMA(T5, Th, Tg);
             {
                V Tv, T9, Tq, Tm, Ts, Tw, Td;
                Tv = VMUL(T7, Tc);
                T9 = VMUL(T7, T8);
                Tq = VFNMS(T5, Tf, Tp);
                Tm = VFMA(T6, Tl, Tk);
                Ts = VFNMS(T6, Tj, Tr);
                Tw = VFNMS(Tb, T8, Tv);
                Td = VFMA(Tb, Tc, T9);
                {
                   V Tn, TA, Tu, Tt;
                   Tn = VADD(Ti, Tm);
                   TA = VSUB(Ti, Tm);
                   Tu = VADD(Tq, Ts);
                   Tt = VSUB(Tq, Ts);
                   {
                        V Ty, Tz, Te, To;
                        Ty = VADD(Tw, Tx);
                        Tz = VSUB(Tx, Tw);
                        Te = VADD(T1, Td);
                        To = VSUB(T1, Td);
                        ST(&(ii[WS(ios, 3)]), VADD(TA, Tz), dist, &(ii[WS(ios, 1)]));
                        ST(&(ii[WS(ios, 1)]), VSUB(Tz, TA), dist, &(ii[WS(ios, 1)]));
                        ST(&(ii[WS(ios, 2)]), VSUB(Ty, Tu), dist, &(ii[0]));
                        ST(&(ii[0]), VADD(Tu, Ty), dist, &(ii[0]));
                        ST(&(ri[WS(ios, 1)]), VADD(To, Tt), dist, &(ri[WS(ios, 1)]));
                        ST(&(ri[WS(ios, 3)]), VSUB(To, Tt), dist, &(ri[WS(ios, 1)]));
                        ST(&(ri[0]), VADD(Te, Tn), dist, &(ri[0]));
                        ST(&(ri[WS(ios, 2)]), VSUB(Te, Tn), dist, &(ri[0]));
                   }
                }
             }
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(3),
     {TW_NEXT, (2 * VL), 0}
};

static const ct_desc desc = { 4, "t2sv_4", twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 };

void X(codelet_t2sv_4) (planner *p) {
     X(kdft_dit_register) (p, t2sv_4, &desc);
}
#else                   /* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include ts.h */

/*
 * This function contains 24 FP additions, 16 FP multiplications,
 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
 * 21 stack variables, and 16 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle.ml,v 1.24 2006-02-12 23:34:12 athena Exp $
 */

#include "ts.h"

static const R *t2sv_4(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     INT i;
     for (i = m; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * dist), ii = ii + ((2 * VL) * dist), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(ios)) {
        V T2, T4, T3, T5, T6, T8;
        T2 = LDW(&(W[0]));
        T4 = LDW(&(W[TWVL * 1]));
        T3 = LDW(&(W[TWVL * 2]));
        T5 = LDW(&(W[TWVL * 3]));
        T6 = VFMA(T2, T3, VMUL(T4, T5));
        T8 = VFNMS(T4, T3, VMUL(T2, T5));
        {
             V T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9;
             T1 = LD(&(ri[0]), dist, &(ri[0]));
             Tp = LD(&(ii[0]), dist, &(ii[0]));
             T7 = LD(&(ri[WS(ios, 2)]), dist, &(ri[0]));
             T9 = LD(&(ii[WS(ios, 2)]), dist, &(ii[0]));
             Ta = VFMA(T6, T7, VMUL(T8, T9));
             To = VFNMS(T8, T7, VMUL(T6, T9));
             {
                V Tc, Td, Tf, Tg;
                Tc = LD(&(ri[WS(ios, 1)]), dist, &(ri[WS(ios, 1)]));
                Td = LD(&(ii[WS(ios, 1)]), dist, &(ii[WS(ios, 1)]));
                Te = VFMA(T2, Tc, VMUL(T4, Td));
                Tk = VFNMS(T4, Tc, VMUL(T2, Td));
                Tf = LD(&(ri[WS(ios, 3)]), dist, &(ri[WS(ios, 1)]));
                Tg = LD(&(ii[WS(ios, 3)]), dist, &(ii[WS(ios, 1)]));
                Th = VFMA(T3, Tf, VMUL(T5, Tg));
                Tl = VFNMS(T5, Tf, VMUL(T3, Tg));
             }
             {
                V Tb, Ti, Tn, Tq;
                Tb = VADD(T1, Ta);
                Ti = VADD(Te, Th);
                ST(&(ri[WS(ios, 2)]), VSUB(Tb, Ti), dist, &(ri[0]));
                ST(&(ri[0]), VADD(Tb, Ti), dist, &(ri[0]));
                Tn = VADD(Tk, Tl);
                Tq = VADD(To, Tp);
                ST(&(ii[0]), VADD(Tn, Tq), dist, &(ii[0]));
                ST(&(ii[WS(ios, 2)]), VSUB(Tq, Tn), dist, &(ii[0]));
             }
             {
                V Tj, Tm, Tr, Ts;
                Tj = VSUB(T1, Ta);
                Tm = VSUB(Tk, Tl);
                ST(&(ri[WS(ios, 3)]), VSUB(Tj, Tm), dist, &(ri[WS(ios, 1)]));
                ST(&(ri[WS(ios, 1)]), VADD(Tj, Tm), dist, &(ri[WS(ios, 1)]));
                Tr = VSUB(Tp, To);
                Ts = VSUB(Te, Th);
                ST(&(ii[WS(ios, 1)]), VSUB(Tr, Ts), dist, &(ii[WS(ios, 1)]));
                ST(&(ii[WS(ios, 3)]), VADD(Ts, Tr), dist, &(ii[WS(ios, 1)]));
             }
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(3),
     {TW_NEXT, (2 * VL), 0}
};

static const ct_desc desc = { 4, "t2sv_4", twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 };

void X(codelet_t2sv_4) (planner *p) {
     X(kdft_dit_register) (p, t2sv_4, &desc);
}
#endif                        /* HAVE_FMA */

Generated by  Doxygen 1.6.0   Back to index