Logo Search packages:      
Sourcecode: blender version File versions  Download package

t1fv_12.c

/*
 * Copyright (c) 2003, 2006 Matteo Frigo
 * Copyright (c) 2003, 2006 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sat Jul  1 14:46:24 EDT 2006 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */

/*
 * This function contains 59 FP additions, 42 FP multiplications,
 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
 * 41 stack variables, and 24 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $
 */

#include "t1f.h"

static const R *t1fv_12(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT i;
     R *x;
     x = ri;
     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(ios)) {
        V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM;
        {
             V T9, TC, Tj, TD, Te;
             {
                V T1, T4, T2, Tm, Tx, To;
                T1 = LD(&(x[0]), dist, &(x[0]));
                T4 = LD(&(x[WS(ios, 8)]), dist, &(x[0]));
                T2 = LD(&(x[WS(ios, 4)]), dist, &(x[0]));
                Tm = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));
                Tx = LD(&(x[WS(ios, 9)]), dist, &(x[WS(ios, 1)]));
                To = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));
                {
                   V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta;
                   T8 = LD(&(x[WS(ios, 6)]), dist, &(x[0]));
                   Tc = LD(&(x[WS(ios, 2)]), dist, &(x[0]));
                   Ta = LD(&(x[WS(ios, 10)]), dist, &(x[0]));
                   T5 = BYTWJ(&(W[TWVL * 14]), T4);
                   T3 = BYTWJ(&(W[TWVL * 6]), T2);
                   Tn = BYTWJ(&(W[0]), Tm);
                   Ty = BYTWJ(&(W[TWVL * 16]), Tx);
                   Tp = BYTWJ(&(W[TWVL * 8]), To);
                   T9 = BYTWJ(&(W[TWVL * 10]), T8);
                   Td = BYTWJ(&(W[TWVL * 2]), Tc);
                   Tb = BYTWJ(&(W[TWVL * 18]), Ta);
                   {
                        V Th, T6, Tt, Tz;
                        Th = LD(&(x[WS(ios, 11)]), dist, &(x[WS(ios, 1)]));
                        TC = VSUB(T5, T3);
                        T6 = VADD(T3, T5);
                        Tt = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));
                        Tz = VADD(Tn, Tp);
                        Tq = VSUB(Tn, Tp);
                        Tj = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));
                        TD = VSUB(Td, Tb);
                        Te = VADD(Tb, Td);
                        Ti = BYTWJ(&(W[TWVL * 20]), Th);
                        T7 = VFNMS(LDK(KP500000000), T6, T1);
                        TQ = VADD(T1, T6);
                        Tu = BYTWJ(&(W[TWVL * 4]), Tt);
                        TA = VFNMS(LDK(KP500000000), Tz, Ty);
                        TU = VADD(Ty, Tz);
                   }
                }
             }
             Tk = BYTWJ(&(W[TWVL * 12]), Tj);
             TR = VADD(T9, Te);
             Tf = VFNMS(LDK(KP500000000), Te, T9);
             TE = VSUB(TC, TD);
             TM = VADD(TC, TD);
        }
        {
             V Tv, Tl, TI, Tg, TW, TS;
             Tv = VADD(Tk, Ti);
             Tl = VSUB(Ti, Tk);
             TI = VADD(T7, Tf);
             Tg = VSUB(T7, Tf);
             TW = VADD(TQ, TR);
             TS = VSUB(TQ, TR);
             {
                V TT, Tw, TL, Tr;
                TT = VADD(Tu, Tv);
                Tw = VFNMS(LDK(KP500000000), Tv, Tu);
                TL = VSUB(Tl, Tq);
                Tr = VADD(Tl, Tq);
                {
                   V TP, TN, TG, Ts, TO, TK, TH, TF;
                   {
                        V TX, TV, TJ, TB;
                        TX = VADD(TT, TU);
                        TV = VSUB(TT, TU);
                        TJ = VADD(Tw, TA);
                        TB = VSUB(Tw, TA);
                        TP = VMUL(LDK(KP866025403), VADD(TM, TL));
                        TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
                        TG = VFNMS(LDK(KP866025403), Tr, Tg);
                        Ts = VFMA(LDK(KP866025403), Tr, Tg);
                        ST(&(x[WS(ios, 6)]), VSUB(TW, TX), dist, &(x[0]));
                        ST(&(x[0]), VADD(TW, TX), dist, &(x[0]));
                        ST(&(x[WS(ios, 3)]), VFMAI(TV, TS), dist, &(x[WS(ios, 1)]));
                        ST(&(x[WS(ios, 9)]), VFNMSI(TV, TS), dist, &(x[WS(ios, 1)]));
                        TO = VADD(TI, TJ);
                        TK = VSUB(TI, TJ);
                        TH = VFMA(LDK(KP866025403), TE, TB);
                        TF = VFNMS(LDK(KP866025403), TE, TB);
                   }
                   ST(&(x[WS(ios, 4)]), VFMAI(TP, TO), dist, &(x[0]));
                   ST(&(x[WS(ios, 8)]), VFNMSI(TP, TO), dist, &(x[0]));
                   ST(&(x[WS(ios, 10)]), VFNMSI(TN, TK), dist, &(x[0]));
                   ST(&(x[WS(ios, 2)]), VFMAI(TN, TK), dist, &(x[0]));
                   ST(&(x[WS(ios, 5)]), VFNMSI(TH, TG), dist, &(x[WS(ios, 1)]));
                   ST(&(x[WS(ios, 7)]), VFMAI(TH, TG), dist, &(x[WS(ios, 1)]));
                   ST(&(x[WS(ios, 11)]), VFMAI(TF, Ts), dist, &(x[WS(ios, 1)]));
                   ST(&(x[WS(ios, 1)]), VFNMSI(TF, Ts), dist, &(x[WS(ios, 1)]));
                }
             }
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(2),
     VTW(3),
     VTW(4),
     VTW(5),
     VTW(6),
     VTW(7),
     VTW(8),
     VTW(9),
     VTW(10),
     VTW(11),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 12, "t1fv_12", twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };

void X(codelet_t1fv_12) (planner *p) {
     X(kdft_dit_register) (p, t1fv_12, &desc);
}
#else                   /* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */

/*
 * This function contains 59 FP additions, 30 FP multiplications,
 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
 * 28 stack variables, and 24 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $
 */

#include "t1f.h"

static const R *t1fv_12(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT i;
     R *x;
     x = ri;
     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(ios)) {
        V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
        V TK;
        {
             V T5, T3, T4, T2;
             T1 = LD(&(x[0]), dist, &(x[0]));
             T4 = LD(&(x[WS(ios, 8)]), dist, &(x[0]));
             T5 = BYTWJ(&(W[TWVL * 14]), T4);
             T2 = LD(&(x[WS(ios, 4)]), dist, &(x[0]));
             T3 = BYTWJ(&(W[TWVL * 6]), T2);
             TH = VSUB(T5, T3);
             T6 = VADD(T3, T5);
             TA = VFNMS(LDK(KP500000000), T6, T1);
        }
        {
             V Tu, Ts, Tp, Tt, Tr;
             Tp = LD(&(x[WS(ios, 9)]), dist, &(x[WS(ios, 1)]));
             Tq = BYTWJ(&(W[TWVL * 16]), Tp);
             Tt = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));
             Tu = BYTWJ(&(W[TWVL * 8]), Tt);
             Tr = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));
             Ts = BYTWJ(&(W[0]), Tr);
             TE = VSUB(Tu, Ts);
             Tv = VADD(Ts, Tu);
             TL = VFNMS(LDK(KP500000000), Tv, Tq);
        }
        {
             V Td, Tb, T8, Tc, Ta;
             T8 = LD(&(x[WS(ios, 6)]), dist, &(x[0]));
             T9 = BYTWJ(&(W[TWVL * 10]), T8);
             Tc = LD(&(x[WS(ios, 2)]), dist, &(x[0]));
             Td = BYTWJ(&(W[TWVL * 2]), Tc);
             Ta = LD(&(x[WS(ios, 10)]), dist, &(x[0]));
             Tb = BYTWJ(&(W[TWVL * 18]), Ta);
             TI = VSUB(Td, Tb);
             Te = VADD(Tb, Td);
             TB = VFNMS(LDK(KP500000000), Te, T9);
        }
        {
             V Tm, Tk, Th, Tl, Tj;
             Th = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));
             Ti = BYTWJ(&(W[TWVL * 4]), Th);
             Tl = LD(&(x[WS(ios, 11)]), dist, &(x[WS(ios, 1)]));
             Tm = BYTWJ(&(W[TWVL * 20]), Tl);
             Tj = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));
             Tk = BYTWJ(&(W[TWVL * 12]), Tj);
             TD = VSUB(Tm, Tk);
             Tn = VADD(Tk, Tm);
             TK = VFNMS(LDK(KP500000000), Tn, Ti);
        }
        {
             V Tg, Ty, Tx, Tz;
             {
                V T7, Tf, To, Tw;
                T7 = VADD(T1, T6);
                Tf = VADD(T9, Te);
                Tg = VSUB(T7, Tf);
                Ty = VADD(T7, Tf);
                To = VADD(Ti, Tn);
                Tw = VADD(Tq, Tv);
                Tx = VBYI(VSUB(To, Tw));
                Tz = VADD(To, Tw);
             }
             ST(&(x[WS(ios, 9)]), VSUB(Tg, Tx), dist, &(x[WS(ios, 1)]));
             ST(&(x[0]), VADD(Ty, Tz), dist, &(x[0]));
             ST(&(x[WS(ios, 3)]), VADD(Tg, Tx), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 6)]), VSUB(Ty, Tz), dist, &(x[0]));
        }
        {
             V TS, TW, TV, TX;
             {
                V TQ, TR, TT, TU;
                TQ = VADD(TA, TB);
                TR = VADD(TK, TL);
                TS = VSUB(TQ, TR);
                TW = VADD(TQ, TR);
                TT = VADD(TD, TE);
                TU = VADD(TH, TI);
                TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
                TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
             }
             ST(&(x[WS(ios, 10)]), VSUB(TS, TV), dist, &(x[0]));
             ST(&(x[WS(ios, 4)]), VADD(TW, TX), dist, &(x[0]));
             ST(&(x[WS(ios, 2)]), VADD(TS, TV), dist, &(x[0]));
             ST(&(x[WS(ios, 8)]), VSUB(TW, TX), dist, &(x[0]));
        }
        {
             V TG, TP, TN, TO;
             {
                V TC, TF, TJ, TM;
                TC = VSUB(TA, TB);
                TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
                TG = VSUB(TC, TF);
                TP = VADD(TC, TF);
                TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
                TM = VSUB(TK, TL);
                TN = VBYI(VADD(TJ, TM));
                TO = VBYI(VSUB(TJ, TM));
             }
             ST(&(x[WS(ios, 5)]), VSUB(TG, TN), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 11)]), VSUB(TP, TO), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 7)]), VADD(TN, TG), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 1)]), VADD(TO, TP), dist, &(x[WS(ios, 1)]));
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(2),
     VTW(3),
     VTW(4),
     VTW(5),
     VTW(6),
     VTW(7),
     VTW(8),
     VTW(9),
     VTW(10),
     VTW(11),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 12, "t1fv_12", twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };

void X(codelet_t1fv_12) (planner *p) {
     X(kdft_dit_register) (p, t1fv_12, &desc);
}
#endif                        /* HAVE_FMA */

Generated by  Doxygen 1.6.0   Back to index