Logo Search packages:      
Sourcecode: blender version File versions  Download package

btTransformUtil.h

/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#ifndef SIMD_TRANSFORM_UTIL_H
#define SIMD_TRANSFORM_UTIL_H

#include "btTransform.h"
#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI



#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)

#define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x))))        /* reciprocal square root */

SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir)
{
      return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(),
      supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(),
      supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); 
}


SIMD_FORCE_INLINE void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q)
{
  if (btFabs(n.z()) > SIMDSQRT12) {
    // choose p in y-z plane
    btScalar a = n[1]*n[1] + n[2]*n[2];
    btScalar k = btRecipSqrt (a);
    p.setValue(0,-n[2]*k,n[1]*k);
    // set q = n x p
    q.setValue(a*k,-n[0]*p[2],n[0]*p[1]);
  }
  else {
    // choose p in x-y plane
    btScalar a = n.x()*n.x() + n.y()*n.y();
    btScalar k = btRecipSqrt (a);
    p.setValue(-n.y()*k,n.x()*k,0);
    // set q = n x p
    q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k);
  }
}



/// Utils related to temporal transforms
00059 class btTransformUtil
{

public:

      static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform)
      {
            predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
//    #define QUATERNION_DERIVATIVE
      #ifdef QUATERNION_DERIVATIVE
            btQuaternion predictedOrn = curTrans.getRotation();
            predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
            predictedOrn.normalize();
      #else
            //Exponential map
            //google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia

            btVector3 axis;
            btScalar    fAngle = angvel.length(); 
            //limit the angular motion
            if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD)
            {
                  fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
            }

            if ( fAngle < btScalar(0.001) )
            {
                  // use Taylor's expansions of sync function
                  axis   = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle );
            }
            else
            {
                  // sync(fAngle) = sin(c*fAngle)/t
                  axis   = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle );
            }
            btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) ));
            btQuaternion orn0 = curTrans.getRotation();

            btQuaternion predictedOrn = dorn * orn0;
            predictedOrn.normalize();
      #endif
            predictedTransform.setRotation(predictedOrn);
      }

      static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
      {
            linVel = (pos1 - pos0) / timeStep;
            btVector3 axis;
            btScalar  angle;
            if (orn0 != orn1)
            {
                  calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle);
                  angVel = axis * angle / timeStep;
            } else
            {
                  angVel.setValue(0,0,0);
            }
      }

00118       static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle)
      {
            btQuaternion orn1 = orn0.farthest(orn1a);
            btQuaternion dorn = orn1 * orn0.inverse();
            ///floating point inaccuracy can lead to w component > 1..., which breaks 
            dorn.normalize();
            angle = dorn.getAngle();
            axis = btVector3(dorn.x(),dorn.y(),dorn.z());
            axis[3] = btScalar(0.);
            //check for axis length
            btScalar len = axis.length2();
            if (len < SIMD_EPSILON*SIMD_EPSILON)
                  axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
            else
                  axis /= btSqrt(len);
      }

      static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
      {
            linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
            btVector3 axis;
            btScalar  angle;
            calculateDiffAxisAngle(transform0,transform1,axis,angle);
            angVel = axis * angle / timeStep;
      }

00144       static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
      {
            btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
            btQuaternion dorn;
            dmat.getRotation(dorn);

            ///floating point inaccuracy can lead to w component > 1..., which breaks 
            dorn.normalize();
            
            angle = dorn.getAngle();
            axis = btVector3(dorn.x(),dorn.y(),dorn.z());
            axis[3] = btScalar(0.);
            //check for axis length
            btScalar len = axis.length2();
            if (len < SIMD_EPSILON*SIMD_EPSILON)
                  axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
            else
                  axis /= btSqrt(len);
      }

};


///The btConvexSeparatingDistanceUtil can help speed up convex collision detection 
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
00169 class btConvexSeparatingDistanceUtil
{
      btQuaternion      m_ornA;
      btQuaternion      m_ornB;
      btVector3   m_posA;
      btVector3   m_posB;
      
      btVector3   m_separatingNormal;

      btScalar    m_boundingRadiusA;
      btScalar    m_boundingRadiusB;
      btScalar    m_separatingDistance;

public:

      btConvexSeparatingDistanceUtil(btScalar   boundingRadiusA,btScalar      boundingRadiusB)
            :m_boundingRadiusA(boundingRadiusA),
            m_boundingRadiusB(boundingRadiusB),
            m_separatingDistance(0.f)
      {
      }

      btScalar    getConservativeSeparatingDistance()
      {
            return m_separatingDistance;
      }

      void  updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
      {
            const btVector3& toPosA = transA.getOrigin();
            const btVector3& toPosB = transB.getOrigin();
            btQuaternion toOrnA = transA.getRotation();
            btQuaternion toOrnB = transB.getRotation();

            if (m_separatingDistance>0.f)
            {
                  

                  btVector3 linVelA,angVelA,linVelB,angVelB;
                  btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA);
                  btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB);
                  btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
                  btVector3 relLinVel = (linVelB-linVelA);
                  btScalar relLinVelocLength = (linVelB-linVelA).dot(m_separatingNormal);
                  if (relLinVelocLength<0.f)
                  {
                        relLinVelocLength = 0.f;
                  }
      
                  btScalar    projectedMotion = maxAngularProjectedVelocity +relLinVelocLength;
                  m_separatingDistance -= projectedMotion;
            }
      
            m_posA = toPosA;
            m_posB = toPosB;
            m_ornA = toOrnA;
            m_ornB = toOrnB;
      }

      void  initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
      {
            m_separatingNormal = separatingVector;
            m_separatingDistance = separatingDistance;
            
            const btVector3& toPosA = transA.getOrigin();
            const btVector3& toPosB = transB.getOrigin();
            btQuaternion toOrnA = transA.getRotation();
            btQuaternion toOrnB = transB.getRotation();
            m_posA = toPosA;
            m_posB = toPosB;
            m_ornA = toOrnA;
            m_ornB = toOrnB;
      }

};


#endif //SIMD_TRANSFORM_UTIL_H


Generated by  Doxygen 1.6.0   Back to index