Logo Search packages:      
Sourcecode: blender version File versions  Download package

btOptimizedBvh.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btOptimizedBvh.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btIDebugDraw.h"


btOptimizedBvh::btOptimizedBvh()
{ 
}

btOptimizedBvh::~btOptimizedBvh()
{
}


void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
{
      m_useQuantization = useQuantizedAabbCompression;


      // NodeArray      triangleNodes;

      struct      NodeTriangleCallback : public btInternalTriangleIndexCallback
      {

            NodeArray&  m_triangleNodes;

            NodeTriangleCallback& operator=(NodeTriangleCallback& other)
            {
                  m_triangleNodes = other.m_triangleNodes;
                  return *this;
            }
            
            NodeTriangleCallback(NodeArray&     triangleNodes)
                  :m_triangleNodes(triangleNodes)
            {
            }

            virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
            {
                  btOptimizedBvhNode node;
                  btVector3   aabbMin,aabbMax;
                  aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                  aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                  aabbMin.setMin(triangle[0]);
                  aabbMax.setMax(triangle[0]);
                  aabbMin.setMin(triangle[1]);
                  aabbMax.setMax(triangle[1]);
                  aabbMin.setMin(triangle[2]);
                  aabbMax.setMax(triangle[2]);

                  //with quantization?
                  node.m_aabbMinOrg = aabbMin;
                  node.m_aabbMaxOrg = aabbMax;

                  node.m_escapeIndex = -1;
      
                  //for child nodes
                  node.m_subPart = partId;
                  node.m_triangleIndex = triangleIndex;
                  m_triangleNodes.push_back(node);
            }
      };
      struct      QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
      {
            QuantizedNodeArray&     m_triangleNodes;
            const btQuantizedBvh* m_optimizedTree; // for quantization

            QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
            {
                  m_triangleNodes = other.m_triangleNodes;
                  m_optimizedTree = other.m_optimizedTree;
                  return *this;
            }

            QuantizedNodeTriangleCallback(QuantizedNodeArray&     triangleNodes,const btQuantizedBvh* tree)
                  :m_triangleNodes(triangleNodes),m_optimizedTree(tree)
            {
            }

            virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
            {
                  // The partId and triangle index must fit in the same (positive) integer
                  btAssert(partId < (1<<MAX_NUM_PARTS_IN_BITS));
                  btAssert(triangleIndex < (1<<(31-MAX_NUM_PARTS_IN_BITS)));
                  //negative indices are reserved for escapeIndex
                  btAssert(triangleIndex>=0);

                  btQuantizedBvhNode node;
                  btVector3   aabbMin,aabbMax;
                  aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                  aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                  aabbMin.setMin(triangle[0]);
                  aabbMax.setMax(triangle[0]);
                  aabbMin.setMin(triangle[1]);
                  aabbMax.setMax(triangle[1]);
                  aabbMin.setMin(triangle[2]);
                  aabbMax.setMax(triangle[2]);

                  //PCK: add these checks for zero dimensions of aabb
                  const btScalar MIN_AABB_DIMENSION = btScalar(0.002);
                  const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001);
                  if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION)
                  {
                        aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION);
                        aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION);
                  }
                  if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION)
                  {
                        aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION);
                        aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION);
                  }
                  if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION)
                  {
                        aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION);
                        aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION);
                  }

                  m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
                  m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);

                  node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;

                  m_triangleNodes.push_back(node);
            }
      };
      


      int numLeafNodes = 0;

      
      if (m_useQuantization)
      {

            //initialize quantization values
            setQuantizationValues(bvhAabbMin,bvhAabbMax);

            QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this);

      
            triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);

            //now we have an array of leafnodes in m_leafNodes
            numLeafNodes = m_quantizedLeafNodes.size();


            m_quantizedContiguousNodes.resize(2*numLeafNodes);


      } else
      {
            NodeTriangleCallback    callback(m_leafNodes);

            btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
            btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));

            triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);

            //now we have an array of leafnodes in m_leafNodes
            numLeafNodes = m_leafNodes.size();

            m_contiguousNodes.resize(2*numLeafNodes);
      }

      m_curNodeIndex = 0;

      buildTree(0,numLeafNodes);

      ///if the entire tree is small then subtree size, we need to create a header info for the tree
      if(m_useQuantization && !m_SubtreeHeaders.size())
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
            subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
            subtree.m_rootNodeIndex = 0;
            subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
      }

      //PCK: update the copy of the size
      m_subtreeHeaderCount = m_SubtreeHeaders.size();

      //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
      m_quantizedLeafNodes.clear();
      m_leafNodes.clear();
}




void  btOptimizedBvh::refit(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
      if (m_useQuantization)
      {

            setQuantizationValues(aabbMin,aabbMax);

            updateBvhNodes(meshInterface,0,m_curNodeIndex,0);

            ///now update all subtree headers

            int i;
            for (i=0;i<m_SubtreeHeaders.size();i++)
            {
                  btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
                  subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
            }

      } else
      {

      }
}




void  btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
      //incrementally initialize quantization values
      btAssert(m_useQuantization);

      btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
      btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
      btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());

      btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
      btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
      btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());

      ///we should update all quantization values, using updateBvhNodes(meshInterface);
      ///but we only update chunks that overlap the given aabb
      
      unsigned short    quantizedQueryAabbMin[3];
      unsigned short    quantizedQueryAabbMax[3];

      quantize(&quantizedQueryAabbMin[0],aabbMin,0);
      quantize(&quantizedQueryAabbMax[0],aabbMax,1);

      int i;
      for (i=0;i<this->m_SubtreeHeaders.size();i++)
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];

            //PCK: unsigned instead of bool
            unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
            if (overlap != 0)
            {
                  updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);

                  subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
            }
      }
      
}

void  btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
{
      (void)index;

      btAssert(m_useQuantization);

      int curNodeSubPart=-1;

      //get access info to trianglemesh data
            const unsigned char *vertexbase = 0;
            int numverts = 0;
            PHY_ScalarType type = PHY_INTEGER;
            int stride = 0;
            const unsigned char *indexbase = 0;
            int indexstride = 0;
            int numfaces = 0;
            PHY_ScalarType indicestype = PHY_INTEGER;

            btVector3   triangleVerts[3];
            btVector3   aabbMin,aabbMax;
            const btVector3& meshScaling = meshInterface->getScaling();
            
            int i;
            for (i=endNode-1;i>=firstNode;i--)
            {


                  btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
                  if (curNode.isLeafNode())
                  {
                        //recalc aabb from triangle data
                        int nodeSubPart = curNode.getPartId();
                        int nodeTriangleIndex = curNode.getTriangleIndex();
                        if (nodeSubPart != curNodeSubPart)
                        {
                              if (curNodeSubPart >= 0)
                                    meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
                              meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,   type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);

                              curNodeSubPart = nodeSubPart;
                              btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
                        }
                        //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,

                        unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
                        
                        
                        for (int j=2;j>=0;j--)
                        {
                              
                              int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
                              btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
#ifdef DEBUG_PATCH_COLORS
                              btVector3 mycolor = color[index&3];
                              graphicsbase[8] = mycolor.getX();
                              graphicsbase[9] = mycolor.getY();
                              graphicsbase[10] = mycolor.getZ();
#endif //DEBUG_PATCH_COLORS


                              triangleVerts[j] = btVector3(
                                    graphicsbase[0]*meshScaling.getX(),
                                    graphicsbase[1]*meshScaling.getY(),
                                    graphicsbase[2]*meshScaling.getZ());
                        }


                        
                        aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                        aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                        aabbMin.setMin(triangleVerts[0]);
                        aabbMax.setMax(triangleVerts[0]);
                        aabbMin.setMin(triangleVerts[1]);
                        aabbMax.setMax(triangleVerts[1]);
                        aabbMin.setMin(triangleVerts[2]);
                        aabbMax.setMax(triangleVerts[2]);

                        quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0);
                        quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1);
                        
                  } else
                  {
                        //combine aabb from both children

                        btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
                        
                        btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
                              &m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
                        

                        {
                              for (int i=0;i<3;i++)
                              {
                                    curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
                                    if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
                                          curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];

                                    curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
                                    if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
                                          curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
                              }
                        }
                  }

            }

            if (curNodeSubPart >= 0)
                  meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);

            
}

///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
btOptimizedBvh* btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
{
      btQuantizedBvh* bvh = btQuantizedBvh::deSerializeInPlace(i_alignedDataBuffer,i_dataBufferSize,i_swapEndian);
      
      //we don't add additional data so just do a static upcast
      return static_cast<btOptimizedBvh*>(bvh);
}

Generated by  Doxygen 1.6.0   Back to index