Logo Search packages:      
Sourcecode: blender version File versions  Download package

btDiscreteDynamicsWorld.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btDiscreteDynamicsWorld.h"

//collision detection
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btQuickprof.h"

//rigidbody & constraints
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"

//for debug rendering
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btConeShape.h"
#include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btTriangleCallback.h"
#include "BulletCollision/CollisionShapes/btTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "LinearMath/btIDebugDraw.h"



//vehicle
#include "BulletDynamics/Vehicle/btRaycastVehicle.h"
#include "BulletDynamics/Vehicle/btVehicleRaycaster.h"
#include "BulletDynamics/Vehicle/btWheelInfo.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btMotionState.h"





00062 btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration)
:btDynamicsWorld(dispatcher,pairCache,collisionConfiguration),
m_constraintSolver(constraintSolver),
m_gravity(0,-10,0),
m_localTime(btScalar(1.)/btScalar(60.)),
m_profileTimings(0)
{
      if (!m_constraintSolver)
      {
            void* mem = btAlignedAlloc(sizeof(btSequentialImpulseConstraintSolver),16);
            m_constraintSolver = new (mem) btSequentialImpulseConstraintSolver;
            m_ownsConstraintSolver = true;
      } else
      {
            m_ownsConstraintSolver = false;
      }

      {
            void* mem = btAlignedAlloc(sizeof(btSimulationIslandManager),16);
            m_islandManager = new (mem) btSimulationIslandManager();
      }

      m_ownsIslandManager = true;
}


btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld()
{
      //only delete it when we created it
      if (m_ownsIslandManager)
      {
            m_islandManager->~btSimulationIslandManager();
            btAlignedFree( m_islandManager);
      }
      if (m_ownsConstraintSolver)
      {

            m_constraintSolver->~btConstraintSolver();
            btAlignedFree(m_constraintSolver);
      }
}

void  btDiscreteDynamicsWorld::saveKinematicState(btScalar timeStep)
{

      for (int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                        btTransform predictedTrans;
                        if (body->getActivationState() != ISLAND_SLEEPING)
                        {
                              if (body->isKinematicObject())
                              {
                                    //to calculate velocities next frame
                                    body->saveKinematicState(timeStep);
                              }
                        }
            }
      }
}

void  btDiscreteDynamicsWorld::debugDrawWorld()
{

      if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints)
      {
            int numManifolds = getDispatcher()->getNumManifolds();
            btVector3 color(0,0,0);
            for (int i=0;i<numManifolds;i++)
            {
                  btPersistentManifold* contactManifold = getDispatcher()->getManifoldByIndexInternal(i);
                  //btCollisionObject* obA = static_cast<btCollisionObject*>(contactManifold->getBody0());
                  //btCollisionObject* obB = static_cast<btCollisionObject*>(contactManifold->getBody1());

                  int numContacts = contactManifold->getNumContacts();
                  for (int j=0;j<numContacts;j++)
                  {
                        btManifoldPoint& cp = contactManifold->getContactPoint(j);
                        getDebugDrawer()->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color);
                  }
            }
      }


      if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb))
      {
            int i;

            //todo: iterate over awake simulation islands!
            for (  i=0;i<m_collisionObjects.size();i++)
            {
                  btCollisionObject* colObj = m_collisionObjects[i];
                  if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe)
                  {
                        btVector3 color(btScalar(255.),btScalar(255.),btScalar(255.));
                        switch(colObj->getActivationState())
                        {
                        case  ACTIVE_TAG:
                              color = btVector3(btScalar(255.),btScalar(255.),btScalar(255.)); break;
                        case ISLAND_SLEEPING:
                              color =  btVector3(btScalar(0.),btScalar(255.),btScalar(0.));break;
                        case WANTS_DEACTIVATION:
                              color = btVector3(btScalar(0.),btScalar(255.),btScalar(255.));break;
                        case DISABLE_DEACTIVATION:
                              color = btVector3(btScalar(255.),btScalar(0.),btScalar(0.));break;
                        case DISABLE_SIMULATION:
                              color = btVector3(btScalar(255.),btScalar(255.),btScalar(0.));break;
                        default:
                              {
                                    color = btVector3(btScalar(255.),btScalar(0.),btScalar(0.));
                              }
                        };

                        debugDrawObject(colObj->getWorldTransform(),colObj->getCollisionShape(),color);
                  }
                  if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
                  {
                        btPoint3 minAabb,maxAabb;
                        btVector3 colorvec(1,0,0);
                        colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
                        m_debugDrawer->drawAabb(minAabb,maxAabb,colorvec);
                  }

            }
      
            for (  i=0;i<this->m_vehicles.size();i++)
            {
                  for (int v=0;v<m_vehicles[i]->getNumWheels();v++)
                  {
                        btVector3 wheelColor(0,255,255);
                        if (m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_isInContact)
                        {
                              wheelColor.setValue(0,0,255);
                        } else
                        {
                              wheelColor.setValue(255,0,255);
                        }
            
                        btVector3 wheelPosWS = m_vehicles[i]->getWheelInfo(v).m_worldTransform.getOrigin();

                        btVector3 axle = btVector3(   
                              m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[0][m_vehicles[i]->getRightAxis()],
                              m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[1][m_vehicles[i]->getRightAxis()],
                              m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[2][m_vehicles[i]->getRightAxis()]);


                        //m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_wheelAxleWS
                        //debug wheels (cylinders)
                        m_debugDrawer->drawLine(wheelPosWS,wheelPosWS+axle,wheelColor);
                        m_debugDrawer->drawLine(wheelPosWS,m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_contactPointWS,wheelColor);

                  }
            }
      }
}

00221 void  btDiscreteDynamicsWorld::clearForces()
{
      //todo: iterate over awake simulation islands!
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                  body->clearForces();
            }
      }
}     

///apply gravity, call this once per timestep
00237 void  btDiscreteDynamicsWorld::applyGravity()
{
      //todo: iterate over awake simulation islands!
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body && body->isActive())
            {
                  body->applyGravity();
            }
      }
}



void  btDiscreteDynamicsWorld::synchronizeMotionStates()
{
      {
            //todo: iterate over awake simulation islands!
            for ( int i=0;i<m_collisionObjects.size();i++)
            {
                  btCollisionObject* colObj = m_collisionObjects[i];
                  
                  btRigidBody* body = btRigidBody::upcast(colObj);
                  if (body && body->getMotionState() && !body->isStaticOrKinematicObject())
                  {
                        //we need to call the update at least once, even for sleeping objects
                        //otherwise the 'graphics' transform never updates properly
                        //so todo: add 'dirty' flag
                        //if (body->getActivationState() != ISLAND_SLEEPING)
                        {
                              btTransform interpolatedTransform;
                              btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(),
                                    body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),m_localTime*body->getHitFraction(),interpolatedTransform);
                              body->getMotionState()->setWorldTransform(interpolatedTransform);
                        }
                  }
            }
      }

      if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe)
      {
            for ( int i=0;i<this->m_vehicles.size();i++)
            {
                  for (int v=0;v<m_vehicles[i]->getNumWheels();v++)
                  {
                        //synchronize the wheels with the (interpolated) chassis worldtransform
                        m_vehicles[i]->updateWheelTransform(v,true);
                  }
            }
      }

}


00294 int   btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep)
{
      startProfiling(timeStep);

      BT_PROFILE("stepSimulation");

      int numSimulationSubSteps = 0;

      if (maxSubSteps)
      {
            //fixed timestep with interpolation
            m_localTime += timeStep;
            if (m_localTime >= fixedTimeStep)
            {
                  numSimulationSubSteps = int( m_localTime / fixedTimeStep);
                  m_localTime -= numSimulationSubSteps * fixedTimeStep;
            }
      } else
      {
            //variable timestep
            fixedTimeStep = timeStep;
            m_localTime = timeStep;
            if (btFuzzyZero(timeStep))
            {
                  numSimulationSubSteps = 0;
                  maxSubSteps = 0;
            } else
            {
                  numSimulationSubSteps = 1;
                  maxSubSteps = 1;
            }
      }

      //process some debugging flags
      if (getDebugDrawer())
      {
            gDisableDeactivation = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0;
      }
      if (numSimulationSubSteps)
      {

            saveKinematicState(fixedTimeStep);

            applyGravity();

            //clamp the number of substeps, to prevent simulation grinding spiralling down to a halt
            int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps;

            for (int i=0;i<clampedSimulationSteps;i++)
            {
                  internalSingleStepSimulation(fixedTimeStep);
                  synchronizeMotionStates();
            }

      } 

      synchronizeMotionStates();

      clearForces();

#ifndef BT_NO_PROFILE
      CProfileManager::Increment_Frame_Counter();
#endif //BT_NO_PROFILE
      
      return numSimulationSubSteps;
}

00361 void  btDiscreteDynamicsWorld::internalSingleStepSimulation(btScalar timeStep)
{
      
      BT_PROFILE("internalSingleStepSimulation");

      ///apply gravity, predict motion
      predictUnconstraintMotion(timeStep);

      btDispatcherInfo& dispatchInfo = getDispatchInfo();

      dispatchInfo.m_timeStep = timeStep;
      dispatchInfo.m_stepCount = 0;
      dispatchInfo.m_debugDraw = getDebugDrawer();

      ///perform collision detection
      performDiscreteCollisionDetection();

      calculateSimulationIslands();

      
      getSolverInfo().m_timeStep = timeStep;
      


      ///solve contact and other joint constraints
      solveConstraints(getSolverInfo());
      
      ///CallbackTriggers();

      ///integrate transforms
      integrateTransforms(timeStep);

      ///update vehicle simulation
      updateVehicles(timeStep);


      updateActivationState( timeStep );

      if(0 != m_internalTickCallback) {
            (*m_internalTickCallback)(this, timeStep);
      }     
}

void  btDiscreteDynamicsWorld::setGravity(const btVector3& gravity)
{
      m_gravity = gravity;
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                  body->setGravity(gravity);
            }
      }
}

btVector3 btDiscreteDynamicsWorld::getGravity () const
{
      return m_gravity;
}


void  btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body)
{
      //remove all constraints too
      while (body->getNumConstraintRefs())
      {
            btTypedConstraint* constraint = body->getConstraintRef(0);
            removeConstraint(constraint);
      }

      removeCollisionObject(body);
}

void  btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body)
{
      if (!body->isStaticOrKinematicObject())
      {
            body->setGravity(m_gravity);
      }

      if (body->getCollisionShape())
      {
            bool isDynamic = !(body->isStaticObject() || body->isKinematicObject());
            short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
            short collisionFilterMask = isDynamic?    short(btBroadphaseProxy::AllFilter) :     short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);

            addCollisionObject(body,collisionFilterGroup,collisionFilterMask);
      }
}

void  btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body, short group, short mask)
{
      if (!body->isStaticOrKinematicObject())
      {
            body->setGravity(m_gravity);
      }

      if (body->getCollisionShape())
      {
            addCollisionObject(body,group,mask);
      }
}


void  btDiscreteDynamicsWorld::updateVehicles(btScalar timeStep)
{
      BT_PROFILE("updateVehicles");
      
      for ( int i=0;i<m_vehicles.size();i++)
      {
            btRaycastVehicle* vehicle = m_vehicles[i];
            vehicle->updateVehicle( timeStep);
      }
}

void  btDiscreteDynamicsWorld::updateActivationState(btScalar timeStep)
{
      BT_PROFILE("updateActivationState");

      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                  body->updateDeactivation(timeStep);

                  if (body->wantsSleeping())
                  {
                        if (body->isStaticOrKinematicObject())
                        {
                              body->setActivationState(ISLAND_SLEEPING);
                        } else
                        {
                              if (body->getActivationState() == ACTIVE_TAG)
                                    body->setActivationState( WANTS_DEACTIVATION );
                              if (body->getActivationState() == ISLAND_SLEEPING) 
                              {
                                    body->setAngularVelocity(btVector3(0,0,0));
                                    body->setLinearVelocity(btVector3(0,0,0));
                              }

                        }
                  } else
                  {
                        if (body->getActivationState() != DISABLE_DEACTIVATION)
                              body->setActivationState( ACTIVE_TAG );
                  }
            }
      }
}

void  btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint,bool disableCollisionsBetweenLinkedBodies)
{
      m_constraints.push_back(constraint);
      if (disableCollisionsBetweenLinkedBodies)
      {
            constraint->getRigidBodyA().addConstraintRef(constraint);
            constraint->getRigidBodyB().addConstraintRef(constraint);
      }
}

void  btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint)
{
      m_constraints.remove(constraint);
      constraint->getRigidBodyA().removeConstraintRef(constraint);
      constraint->getRigidBodyB().removeConstraintRef(constraint);
}

void  btDiscreteDynamicsWorld::addVehicle(btRaycastVehicle* vehicle)
{
      m_vehicles.push_back(vehicle);
}

void  btDiscreteDynamicsWorld::removeVehicle(btRaycastVehicle* vehicle)
{
      m_vehicles.remove(vehicle);
}

SIMD_FORCE_INLINE int   btGetConstraintIslandId(const btTypedConstraint* lhs)
{
      int islandId;
      
      const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
      const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
      islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag();
      return islandId;

}


class btSortConstraintOnIslandPredicate
{
      public:

            bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs )
            {
                  int rIslandId0,lIslandId0;
                  rIslandId0 = btGetConstraintIslandId(rhs);
                  lIslandId0 = btGetConstraintIslandId(lhs);
                  return lIslandId0 < rIslandId0;
            }
};




00570 void  btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
{
      BT_PROFILE("solveConstraints");
      
      struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
      {

            btContactSolverInfo&    m_solverInfo;
            btConstraintSolver*           m_solver;
            btTypedConstraint**           m_sortedConstraints;
            int                                 m_numConstraints;
            btIDebugDraw*                 m_debugDrawer;
            btStackAlloc*                 m_stackAlloc;
            btDispatcher*                 m_dispatcher;

            InplaceSolverIslandCallback(
                  btContactSolverInfo& solverInfo,
                  btConstraintSolver*     solver,
                  btTypedConstraint** sortedConstraints,
                  int   numConstraints,
                  btIDebugDraw*     debugDrawer,
                  btStackAlloc*                 stackAlloc,
                  btDispatcher* dispatcher)
                  :m_solverInfo(solverInfo),
                  m_solver(solver),
                  m_sortedConstraints(sortedConstraints),
                  m_numConstraints(numConstraints),
                  m_debugDrawer(debugDrawer),
                  m_stackAlloc(stackAlloc),
                  m_dispatcher(dispatcher)
            {

            }

            InplaceSolverIslandCallback& operator=(InplaceSolverIslandCallback& other)
            {
                  btAssert(0);
                  (void)other;
                  return *this;
            }
            virtual     void  ProcessIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId)
            {
                  if (islandId<0)
                  {
                        ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
                        m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
                  } else
                  {
                              //also add all non-contact constraints/joints for this island
                        btTypedConstraint** startConstraint = 0;
                        int numCurConstraints = 0;
                        int i;
                        
                        //find the first constraint for this island
                        for (i=0;i<m_numConstraints;i++)
                        {
                              if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId)
                              {
                                    startConstraint = &m_sortedConstraints[i];
                                    break;
                              }
                        }
                        //count the number of constraints in this island
                        for (;i<m_numConstraints;i++)
                        {
                              if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId)
                              {
                                    numCurConstraints++;
                              }
                        }

                        ///only call solveGroup if there is some work: avoid virtual function call, its overhead can be excessive
                        if (numManifolds + numCurConstraints)
                        {
                              m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
                        }
            
                  }
            }

      };

      //sorted version of all btTypedConstraint, based on islandId
      btAlignedObjectArray<btTypedConstraint*>  sortedConstraints;
      sortedConstraints.resize( m_constraints.size());
      int i; 
      for (i=0;i<getNumConstraints();i++)
      {
            sortedConstraints[i] = m_constraints[i];
      }

//    assert(0);
            
      

      sortedConstraints.quickSort(btSortConstraintOnIslandPredicate());
      
      btTypedConstraint** constraintsPtr = getNumConstraints() ? &sortedConstraints[0] : 0;
      
      InplaceSolverIslandCallback   solverCallback(   solverInfo, m_constraintSolver, constraintsPtr,sortedConstraints.size(),      m_debugDrawer,m_stackAlloc,m_dispatcher1);
      
      m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds());
      
      /// solve all the constraints for this island
      m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld()->getCollisionObjectArray(),&solverCallback);

      m_constraintSolver->allSolved(solverInfo, m_debugDrawer, m_stackAlloc);
}




void  btDiscreteDynamicsWorld::calculateSimulationIslands()
{
      BT_PROFILE("calculateSimulationIslands");

      getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher());

      {
            int i;
            int numConstraints = int(m_constraints.size());
            for (i=0;i< numConstraints ; i++ )
            {
                  btTypedConstraint* constraint = m_constraints[i];

                  const btRigidBody* colObj0 = &constraint->getRigidBodyA();
                  const btRigidBody* colObj1 = &constraint->getRigidBodyB();

                  if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
                        ((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
                  {
                        if (colObj0->isActive() || colObj1->isActive())
                        {

                              getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),
                                    (colObj1)->getIslandTag());
                        }
                  }
            }
      }

      //Store the island id in each body
      getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld());

      
}


#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"

class btClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback
{
      btCollisionObject* m_me;
      btScalar m_allowedPenetration;
      btOverlappingPairCache* m_pairCache;


public:
      btClosestNotMeConvexResultCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache) : 
        btCollisionWorld::ClosestConvexResultCallback(fromA,toA),
            m_allowedPenetration(0.0f),
            m_me(me),
            m_pairCache(pairCache)
      {
      }

      virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace)
      {
            if (convexResult.m_hitCollisionObject == m_me)
                  return 1.0;

            btVector3 linVelA,linVelB;
            linVelA = m_convexToWorld-m_convexFromWorld;
            linVelB = btVector3(0,0,0);//toB.getOrigin()-fromB.getOrigin();

            btVector3 relativeVelocity = (linVelA-linVelB);
            //don't report time of impact for motion away from the contact normal (or causes minor penetration)
            if (convexResult.m_hitNormalLocal.dot(relativeVelocity)>=-m_allowedPenetration)
                  return 1.f;

            return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace);
      }

      virtual bool needsCollision(btBroadphaseProxy* proxy0) const
      {
            //don't collide with itself
            if (proxy0->m_clientObject == m_me)
                  return false;

            ///don't do CCD when the collision filters are not matching
            if (!btCollisionWorld::ClosestConvexResultCallback::needsCollision(proxy0))
                  return false;

            ///don't do CCD when there are already contact points (touching contact/penetration)
            btAlignedObjectArray<btPersistentManifold*> manifoldArray;
            btBroadphasePair* collisionPair = m_pairCache->findPair(m_me->getBroadphaseHandle(),proxy0);
            if (collisionPair)
            {
                  if (collisionPair->m_algorithm)
                  {
                        manifoldArray.resize(0);
                        collisionPair->m_algorithm->getAllContactManifolds(manifoldArray);
                        for (int j=0;j<manifoldArray.size();j++)
                        {
                              btPersistentManifold* manifold = manifoldArray[j];
                              if (manifold->getNumContacts()>0)
                                    return false;
                        }
                  }
            }
            return true;
      }


};

///internal debugging variable. this value shouldn't be too high
int gNumClampedCcdMotions=0;

//#include "stdio.h"
void  btDiscreteDynamicsWorld::integrateTransforms(btScalar timeStep)
{
      BT_PROFILE("integrateTransforms");
      btTransform predictedTrans;
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                  body->setHitFraction(1.f);

                  if (body->isActive() && (!body->isStaticOrKinematicObject()))
                  {
                        body->predictIntegratedTransform(timeStep, predictedTrans);
                        btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();

                        if (body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion)
                        {
                              BT_PROFILE("CCD motion clamping");
                              if (body->getCollisionShape()->isConvex())
                              {
                                    gNumClampedCcdMotions++;
                                    
                                    btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache());
                                    btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
                                    btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
                                    convexSweepTest(&tmpSphere,body->getWorldTransform(),predictedTrans,sweepResults);
                                    if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f))
                                    {
                                          body->setHitFraction(sweepResults.m_closestHitFraction);
                                          body->predictIntegratedTransform(timeStep*body->getHitFraction(), predictedTrans);
                                          body->setHitFraction(0.f);
//                                        printf("clamped integration to hit fraction = %f\n",fraction);
                                    }
                              }
                        }
                        
                        body->proceedToTransform( predictedTrans);
                  }
            }
      }
}



void  btDiscreteDynamicsWorld::predictUnconstraintMotion(btScalar timeStep)
{
      BT_PROFILE("predictUnconstraintMotion");
      for ( int i=0;i<m_collisionObjects.size();i++)
      {
            btCollisionObject* colObj = m_collisionObjects[i];
            btRigidBody* body = btRigidBody::upcast(colObj);
            if (body)
            {
                  if (!body->isStaticOrKinematicObject())
                  {
                        if (body->isActive())
                        {
                              body->integrateVelocities( timeStep);
                              //damping
                              body->applyDamping(timeStep);

                              body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform());
                        }
                  }
            }
      }
}


void  btDiscreteDynamicsWorld::startProfiling(btScalar timeStep)
{
      (void)timeStep;

#ifndef BT_NO_PROFILE
      CProfileManager::Reset();
#endif //BT_NO_PROFILE

}




      

class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
{
      btIDebugDraw*     m_debugDrawer;
      btVector3   m_color;
      btTransform m_worldTrans;

public:

      DebugDrawcallback(btIDebugDraw*     debugDrawer,const btTransform& worldTrans,const btVector3& color) :
                m_debugDrawer(debugDrawer),
            m_color(color),
            m_worldTrans(worldTrans)
      {
      }

      virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
      {
            processTriangle(triangle,partId,triangleIndex);
      }

      virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex)
      {
            (void)partId;
            (void)triangleIndex;

            btVector3 wv0,wv1,wv2;
            wv0 = m_worldTrans*triangle[0];
            wv1 = m_worldTrans*triangle[1];
            wv2 = m_worldTrans*triangle[2];
            m_debugDrawer->drawLine(wv0,wv1,m_color);
            m_debugDrawer->drawLine(wv1,wv2,m_color);
            m_debugDrawer->drawLine(wv2,wv0,m_color);
      }
};

void btDiscreteDynamicsWorld::debugDrawSphere(btScalar radius, const btTransform& transform, const btVector3& color)
{
      btVector3 start = transform.getOrigin();

      const btVector3 xoffs = transform.getBasis() * btVector3(radius,0,0);
      const btVector3 yoffs = transform.getBasis() * btVector3(0,radius,0);
      const btVector3 zoffs = transform.getBasis() * btVector3(0,0,radius);

      // XY 
      getDebugDrawer()->drawLine(start-xoffs, start+yoffs, color);
      getDebugDrawer()->drawLine(start+yoffs, start+xoffs, color);
      getDebugDrawer()->drawLine(start+xoffs, start-yoffs, color);
      getDebugDrawer()->drawLine(start-yoffs, start-xoffs, color);

      // XZ
      getDebugDrawer()->drawLine(start-xoffs, start+zoffs, color);
      getDebugDrawer()->drawLine(start+zoffs, start+xoffs, color);
      getDebugDrawer()->drawLine(start+xoffs, start-zoffs, color);
      getDebugDrawer()->drawLine(start-zoffs, start-xoffs, color);

      // YZ
      getDebugDrawer()->drawLine(start-yoffs, start+zoffs, color);
      getDebugDrawer()->drawLine(start+zoffs, start+yoffs, color);
      getDebugDrawer()->drawLine(start+yoffs, start-zoffs, color);
      getDebugDrawer()->drawLine(start-zoffs, start-yoffs, color);
}

00938 void btDiscreteDynamicsWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
{
      // Draw a small simplex at the center of the object
      {
            btVector3 start = worldTransform.getOrigin();
            getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(1,0,0), btVector3(1,0,0));
            getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(0,1,0), btVector3(0,1,0));
            getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(0,0,1), btVector3(0,0,1));
      }

      if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
      {
            const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
            for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
            {
                  btTransform childTrans = compoundShape->getChildTransform(i);
                  const btCollisionShape* colShape = compoundShape->getChildShape(i);
                  debugDrawObject(worldTransform*childTrans,colShape,color);
            }

      } else
      {
            switch (shape->getShapeType())
            {

            case SPHERE_SHAPE_PROXYTYPE:
                  {
                        const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
                        btScalar radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin
                        
                        debugDrawSphere(radius, worldTransform, color);
                        break;
                  }
            case MULTI_SPHERE_SHAPE_PROXYTYPE:
                  {
                        const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);

                        for (int i = multiSphereShape->getSphereCount()-1; i>=0;i--)
                        {
                              btTransform childTransform = worldTransform;
                              childTransform.getOrigin() += multiSphereShape->getSpherePosition(i);
                              debugDrawSphere(multiSphereShape->getSphereRadius(i), childTransform, color);
                        }

                        break;
                  }
            case CAPSULE_SHAPE_PROXYTYPE:
                  {
                        const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape);

                        btScalar radius = capsuleShape->getRadius();
                        btScalar halfHeight = capsuleShape->getHalfHeight();
                        
                        int upAxis = capsuleShape->getUpAxis();

                        
                        btVector3 capStart(0.f,0.f,0.f);
                        capStart[upAxis] = -halfHeight;

                        btVector3 capEnd(0.f,0.f,0.f);
                        capEnd[upAxis] = halfHeight;

                        // Draw the ends
                        {
                              
                              btTransform childTransform = worldTransform;
                              childTransform.getOrigin() = worldTransform * capStart;
                              debugDrawSphere(radius, childTransform, color);
                        }

                        {
                              btTransform childTransform = worldTransform;
                              childTransform.getOrigin() = worldTransform * capEnd;
                              debugDrawSphere(radius, childTransform, color);
                        }

                        // Draw some additional lines
                        btVector3 start = worldTransform.getOrigin();

                        
                        capStart[(upAxis+1)%3] = radius;
                        capEnd[(upAxis+1)%3] = radius;
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color);
                        capStart[(upAxis+1)%3] = -radius;
                        capEnd[(upAxis+1)%3] = -radius;
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color);

                        capStart[(upAxis+1)%3] = 0.f;
                        capEnd[(upAxis+1)%3] = 0.f;

                        capStart[(upAxis+2)%3] = radius;
                        capEnd[(upAxis+2)%3] = radius;
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color);
                        capStart[(upAxis+2)%3] = -radius;
                        capEnd[(upAxis+2)%3] = -radius;
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color);

                        
                        break;
                  }
            case CONE_SHAPE_PROXYTYPE:
                  {
                        const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
                        btScalar radius = coneShape->getRadius();//+coneShape->getMargin();
                        btScalar height = coneShape->getHeight();//+coneShape->getMargin();
                        btVector3 start = worldTransform.getOrigin();

                        int upAxis= coneShape->getConeUpIndex();
                        

                        btVector3   offsetHeight(0,0,0);
                        offsetHeight[upAxis] = height * btScalar(0.5);
                        btVector3   offsetRadius(0,0,0);
                        offsetRadius[(upAxis+1)%3] = radius;
                        btVector3   offset2Radius(0,0,0);
                        offset2Radius[(upAxis+2)%3] = radius;

                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color);
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color);
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight+offset2Radius),color);
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight-offset2Radius),color);



                        break;

                  }
            case CYLINDER_SHAPE_PROXYTYPE:
                  {
                        const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
                        int upAxis = cylinder->getUpAxis();
                        btScalar radius = cylinder->getRadius();
                        btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis];
                        btVector3 start = worldTransform.getOrigin();
                        btVector3   offsetHeight(0,0,0);
                        offsetHeight[upAxis] = halfHeight;
                        btVector3   offsetRadius(0,0,0);
                        offsetRadius[(upAxis+1)%3] = radius;
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight+offsetRadius),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color);
                        getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight-offsetRadius),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color);
                        break;
                  }

                  case STATIC_PLANE_PROXYTYPE:
                        {
                              const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape);
                              btScalar planeConst = staticPlaneShape->getPlaneConstant();
                              const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
                              btVector3 planeOrigin = planeNormal * planeConst;
                              btVector3 vec0,vec1;
                              btPlaneSpace1(planeNormal,vec0,vec1);
                              btScalar vecLen = 100.f;
                              btVector3 pt0 = planeOrigin + vec0*vecLen;
                              btVector3 pt1 = planeOrigin - vec0*vecLen;
                              btVector3 pt2 = planeOrigin + vec1*vecLen;
                              btVector3 pt3 = planeOrigin - vec1*vecLen;
                              getDebugDrawer()->drawLine(worldTransform*pt0,worldTransform*pt1,color);
                              getDebugDrawer()->drawLine(worldTransform*pt2,worldTransform*pt3,color);
                              break;

                        }
            default:
                  {

                        if (shape->isConcave())
                        {
                              btConcaveShape* concaveMesh = (btConcaveShape*) shape;
                              
                              //todo pass camera, for some culling
                              btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                              btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));

                              DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color);
                              concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax);

                        }

                        if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
                        {
                              btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape;
                              //todo: pass camera for some culling                  
                              btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                              btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
                              //DebugDrawcallback drawCallback;
                              DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color);
                              convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax);
                        }


                        /// for polyhedral shapes
                        if (shape->isPolyhedral())
                        {
                              btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape;

                              int i;
                              for (i=0;i<polyshape->getNumEdges();i++)
                              {
                                    btPoint3 a,b;
                                    polyshape->getEdge(i,a,b);
                                    btVector3 wa = worldTransform * a;
                                    btVector3 wb = worldTransform * b;
                                    getDebugDrawer()->drawLine(wa,wb,color);

                              }

                              
                        }
                  }
            }
      }
}


void  btDiscreteDynamicsWorld::setConstraintSolver(btConstraintSolver* solver)
{
      if (m_ownsConstraintSolver)
      {
            btAlignedFree( m_constraintSolver);
      }
      m_ownsConstraintSolver = false;
      m_constraintSolver = solver;
}

btConstraintSolver* btDiscreteDynamicsWorld::getConstraintSolver()
{
      return m_constraintSolver;
}


int         btDiscreteDynamicsWorld::getNumConstraints() const
{
      return int(m_constraints.size());
}
btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index)
{
      return m_constraints[index];
}
const btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) const
{
      return m_constraints[index];
}

Generated by  Doxygen 1.6.0   Back to index