Logo Search packages:      
Sourcecode: blender version File versions  Download package

btDbvt.h

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2007 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btDbvt implementation by Nathanael Presson

#ifndef BT_DYNAMIC_BOUNDING_VOLUME_TREE_H
#define BT_DYNAMIC_BOUNDING_VOLUME_TREE_H

#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"

//
// Compile time configuration
//


// Implementation profiles
#define DBVT_IMPL_GENERIC           0     // Generic implementation     
#define DBVT_IMPL_SSE               1     // SSE

// Template implementation of ICollide
#ifdef WIN32_AVOID_SSE_WHEN_EMBEDDED_INSIDE_BLENDER //there is always some weird compiler that breaks SSE builds
      #if (defined (_MSC_VER) && _MSC_VER >= 1400)
      #define     DBVT_USE_TEMPLATE       1
      #else
      #define     DBVT_USE_TEMPLATE       0
#endif
#else
#define     DBVT_USE_TEMPLATE       0
#endif

// Use only intrinsics instead of inline asm
#define DBVT_USE_INTRINSIC_SSE      1

// Using memmov for collideOCL
#define DBVT_USE_MEMMOVE            1

// Enable benchmarking code
#define     DBVT_ENABLE_BENCHMARK   0

// Inlining
#define DBVT_INLINE                       SIMD_FORCE_INLINE
// Align
#ifdef WIN32
#define DBVT_ALIGN                        __declspec(align(16))
#else
#define DBVT_ALIGN
#endif

// Specific methods implementation

#ifdef WIN32_AVOID_SSE_WHEN_EMBEDDED_INSIDE_BLENDER //there is always some weird compiler that breaks SSE builds
#define DBVT_SELECT_IMPL            DBVT_IMPL_SSE
#define DBVT_MERGE_IMPL             DBVT_IMPL_SSE
#define DBVT_INT0_IMPL              DBVT_IMPL_SSE
#else
#define DBVT_SELECT_IMPL            DBVT_IMPL_GENERIC
#define DBVT_MERGE_IMPL             DBVT_IMPL_GENERIC
#define DBVT_INT0_IMPL              DBVT_IMPL_GENERIC
#endif

#if   (DBVT_SELECT_IMPL==DBVT_IMPL_SSE)|| \
      (DBVT_MERGE_IMPL==DBVT_IMPL_SSE)||  \
      (DBVT_INT0_IMPL==DBVT_IMPL_SSE)
#include <emmintrin.h>
#endif

//
// Auto config and checks
//

#if DBVT_USE_TEMPLATE
#define     DBVT_VIRTUAL
#define DBVT_VIRTUAL_DTOR(a)
#define DBVT_PREFIX                             template <typename T>
#define DBVT_IPOLICY                      T& policy
#define DBVT_CHECKTYPE                    static const ICollide&  typechecker=*(T*)0;
#else
#define     DBVT_VIRTUAL_DTOR(a)          virtual ~a() {}
#define DBVT_VIRTUAL                      virtual
#define DBVT_PREFIX
#define DBVT_IPOLICY                      ICollide& policy
#define DBVT_CHECKTYPE
#endif

#if DBVT_USE_MEMMOVE
#ifndef __CELLOS_LV2__
#include <memory.h>
#endif
#include <string.h>
#endif

#ifndef DBVT_USE_TEMPLATE
#error "DBVT_USE_TEMPLATE undefined"
#endif

#ifndef DBVT_USE_MEMMOVE
#error "DBVT_USE_MEMMOVE undefined"
#endif

#ifndef DBVT_ENABLE_BENCHMARK
#error "DBVT_ENABLE_BENCHMARK undefined"
#endif

#ifndef DBVT_SELECT_IMPL
#error "DBVT_SELECT_IMPL undefined"
#endif

#ifndef DBVT_MERGE_IMPL
#error "DBVT_MERGE_IMPL undefined"
#endif

#ifndef DBVT_INT0_IMPL
#error "DBVT_INT0_IMPL undefined"
#endif

//
// Defaults volumes
//

/* btDbvtAabbMm               */ 
struct      btDbvtAabbMm
{
DBVT_INLINE btVector3               Center() const    { return((mi+mx)/2); }
DBVT_INLINE btVector3               Lengths() const   { return(mx-mi); }
DBVT_INLINE btVector3               Extents() const   { return((mx-mi)/2); }
DBVT_INLINE const btVector3&  Mins() const      { return(mi); }
DBVT_INLINE const btVector3&  Maxs() const      { return(mx); }
static inline btDbvtAabbMm          FromCE(const btVector3& c,const btVector3& e);
static inline btDbvtAabbMm          FromCR(const btVector3& c,btScalar r);
static inline btDbvtAabbMm          FromMM(const btVector3& mi,const btVector3& mx);
static inline btDbvtAabbMm          FromPoints(const btVector3* pts,int n);
static inline btDbvtAabbMm          FromPoints(const btVector3** ppts,int n);
DBVT_INLINE void                    Expand(const btVector3& e);
DBVT_INLINE void                    SignedExpand(const btVector3& e);
DBVT_INLINE bool                    Contain(const btDbvtAabbMm& a) const;
DBVT_INLINE int                           Classify(const btVector3& n,btScalar o,int s) const;
DBVT_INLINE btScalar                ProjectMinimum(const btVector3& v,unsigned signs) const;
DBVT_INLINE friend bool             Intersect(  const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b);
DBVT_INLINE friend bool             Intersect(  const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b,
                                                                  const btTransform& xform);
DBVT_INLINE friend bool             Intersect(  const btDbvtAabbMm& a,
                                                                  const btVector3& b);
DBVT_INLINE friend bool             Intersect(  const btDbvtAabbMm& a,
                                                                  const btVector3& org,
                                                                  const btVector3& invdir,
                                                                  const unsigned* signs);
DBVT_INLINE friend btScalar         Proximity(  const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b);
DBVT_INLINE friend int              Select(           const btDbvtAabbMm& o,
                                                                  const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b);
DBVT_INLINE friend void             Merge(            const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b,
                                                                  btDbvtAabbMm& r);
DBVT_INLINE friend bool             NotEqual(   const btDbvtAabbMm& a,
                                                                  const btDbvtAabbMm& b);
private:
DBVT_INLINE void                    AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const;
private:
btVector3   mi,mx;
};

// Types    
typedef     btDbvtAabbMm      btDbvtVolume;

/* btDbvtNode                       */ 
struct      btDbvtNode
{
      btDbvtVolume      volume;
      btDbvtNode*       parent;
      DBVT_INLINE bool  isleaf() const          { return(childs[1]==0); }
      DBVT_INLINE bool  isinternal() const      { return(!isleaf()); }
      union {
                  btDbvtNode* childs[2];
                  void* data;
                  int         dataAsInt;
                  };
};

///The btDbvt class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
///This btDbvt is used for soft body collision detection and for the btDbvtBroadphase. It has a fast insert, remove and update of nodes.
///Unlike the btQuantizedBvh, nodes can be dynamically moved around, which allows for change in topology of the underlying data structure.
00198 struct      btDbvt
      {
      /* Stack element  */ 
      struct      sStkNN
            {
            const btDbvtNode* a;
            const btDbvtNode* b;
            sStkNN() {}
            sStkNN(const btDbvtNode* na,const btDbvtNode* nb) : a(na),b(nb) {}
            };
      struct      sStkNP
            {
            const btDbvtNode* node;
            int               mask;
            sStkNP(const btDbvtNode* n,unsigned m) : node(n),mask(m) {}
            };
      struct      sStkNPS
            {
            const btDbvtNode* node;
            int               mask;
            btScalar    value;
            sStkNPS() {}
            sStkNPS(const btDbvtNode* n,unsigned m,btScalar v) : node(n),mask(m),value(v) {}
            };
      struct      sStkCLN
            {
            const btDbvtNode* node;
            btDbvtNode*       parent;
            sStkCLN(const btDbvtNode* n,btDbvtNode* p) : node(n),parent(p) {}
            };
      // Policies/Interfaces
                  
      /* ICollide */ 
      struct      ICollide
            {           
            DBVT_VIRTUAL_DTOR(ICollide)
            DBVT_VIRTUAL void Process(const btDbvtNode*,const btDbvtNode*)          {}
            DBVT_VIRTUAL void Process(const btDbvtNode*)                            {}
            DBVT_VIRTUAL void Process(const btDbvtNode* n,btScalar)                 { Process(n); }
            DBVT_VIRTUAL bool Descent(const btDbvtNode*)                            { return(true); }
            DBVT_VIRTUAL bool AllLeaves(const btDbvtNode*)                          { return(true); }
            };
      /* IWriter  */ 
      struct      IWriter
            {
            virtual ~IWriter() {}
            virtual void            Prepare(const btDbvtNode* root,int numnodes)=0;
            virtual void            WriteNode(const btDbvtNode*,int index,int parent,int child0,int child1)=0;
            virtual void            WriteLeaf(const btDbvtNode*,int index,int parent)=0;
            };
      /* IClone   */ 
      struct      IClone
            {
            virtual ~IClone() {}
            virtual void            CloneLeaf(btDbvtNode*) {}
            };
            
      // Constants
      enum  {
                  SIMPLE_STACKSIZE  =     64,
                  DOUBLE_STACKSIZE  =     SIMPLE_STACKSIZE*2
                  };
            
      // Fields
      btDbvtNode*       m_root;
      btDbvtNode*       m_free;
      int                     m_lkhd;
      int                     m_leaves;
      unsigned          m_opath;
      // Methods
                              btDbvt();
                              ~btDbvt();
      void              clear();
      bool              empty() const { return(0==m_root); }
      void              optimizeBottomUp();
      void              optimizeTopDown(int bu_treshold=128);
      void              optimizeIncremental(int passes);
      btDbvtNode*       insert(const btDbvtVolume& box,void* data);
      void              update(btDbvtNode* leaf,int lookahead=-1);
      void              update(btDbvtNode* leaf,const btDbvtVolume& volume);
      bool              update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity,btScalar margin);
      bool              update(btDbvtNode* leaf,btDbvtVolume volume,const btVector3& velocity);
      bool              update(btDbvtNode* leaf,btDbvtVolume volume,btScalar margin);     
      void              remove(btDbvtNode* leaf);
      void              write(IWriter* iwriter) const;
      void              clone(btDbvt& dest,IClone* iclone=0) const;
      static int        maxdepth(const btDbvtNode* node);
      static int        countLeaves(const btDbvtNode* node);
      static void       extractLeaves(const btDbvtNode* node,btAlignedObjectArray<const btDbvtNode*>& leaves);
      #if DBVT_ENABLE_BENCHMARK
      static void       benchmark();
      #else
      static void       benchmark(){}
      #endif
      // DBVT_IPOLICY must support ICollide policy/interface
      DBVT_PREFIX
      static void       enumNodes(  const btDbvtNode* root,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       enumLeaves( const btDbvtNode* root,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideTT(  const btDbvtNode* root0,
                                                const btDbvtNode* root1,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideTT(  const btDbvtNode* root0,
                                                const btDbvtNode* root1,
                                                const btTransform& xform,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideTT(  const btDbvtNode* root0,
                                                const btTransform& xform0,
                                                const btDbvtNode* root1,
                                                const btTransform& xform1,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideTV(  const btDbvtNode* root,
                                                const btDbvtVolume& volume,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideRAY( const btDbvtNode* root,
                                                const btVector3& origin,
                                                const btVector3& direction,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideKDOP(const btDbvtNode* root,
                                                const btVector3* normals,
                                                const btScalar* offsets,
                                                int count,
                                                DBVT_IPOLICY);
      DBVT_PREFIX
      static void       collideOCL( const btDbvtNode* root,
                                                const btVector3* normals,
                                                const btScalar* offsets,
                                                const btVector3& sortaxis,
                                                int count,                                            
                                                DBVT_IPOLICY,
                                                bool fullsort=true);
      DBVT_PREFIX
      static void       collideTU(  const btDbvtNode* root,
                                                DBVT_IPOLICY);
      // Helpers  
      static DBVT_INLINE int  nearest(const int* i,const btDbvt::sStkNPS* a,btScalar v,int l,int h)
            {
            int   m=0;
            while(l<h)
                  {
                  m=(l+h)>>1;
                  if(a[i[m]].value>=v) l=m+1; else h=m;
                  }
            return(h);
            }
      static DBVT_INLINE int  allocate(   btAlignedObjectArray<int>& ifree,
                                                            btAlignedObjectArray<sStkNPS>& stock,
                                                            const sStkNPS& value)
            {
            int   i;
            if(ifree.size()>0)
                  { i=ifree[ifree.size()-1];ifree.pop_back();stock[i]=value; }
                  else
                  { i=stock.size();stock.push_back(value); }
            return(i); 
            }
      //
      private:
                              btDbvt(const btDbvt&)   {}    
      };

//
// Inline's
//

//
inline btDbvtAabbMm                 btDbvtAabbMm::FromCE(const btVector3& c,const btVector3& e)
{
btDbvtAabbMm box;
box.mi=c-e;box.mx=c+e;
return(box);
}
      
//
inline btDbvtAabbMm                 btDbvtAabbMm::FromCR(const btVector3& c,btScalar r)
{
return(FromCE(c,btVector3(r,r,r)));
}
      
//
inline btDbvtAabbMm                 btDbvtAabbMm::FromMM(const btVector3& mi,const btVector3& mx)
{
btDbvtAabbMm box;
box.mi=mi;box.mx=mx;
return(box);
}
      
//
inline btDbvtAabbMm                 btDbvtAabbMm::FromPoints(const btVector3* pts,int n)
{
btDbvtAabbMm box;
box.mi=box.mx=pts[0];
for(int i=1;i<n;++i)
      {
      box.mi.setMin(pts[i]);
      box.mx.setMax(pts[i]);
      }
return(box);
}

//
inline btDbvtAabbMm                 btDbvtAabbMm::FromPoints(const btVector3** ppts,int n)
{
btDbvtAabbMm box;
box.mi=box.mx=*ppts[0];
for(int i=1;i<n;++i)
      {
      box.mi.setMin(*ppts[i]);
      box.mx.setMax(*ppts[i]);
      }
return(box);
}

//
DBVT_INLINE void        btDbvtAabbMm::Expand(const btVector3& e)
{
mi-=e;mx+=e;
}
      
//
DBVT_INLINE void        btDbvtAabbMm::SignedExpand(const btVector3& e)
{
if(e.x()>0) mx.setX(mx.x()+e[0]); else mi.setX(mi.x()+e[0]);
if(e.y()>0) mx.setY(mx.y()+e[1]); else mi.setY(mi.y()+e[1]);
if(e.z()>0) mx.setZ(mx.z()+e[2]); else mi.setZ(mi.z()+e[2]);
}
      
//
DBVT_INLINE bool        btDbvtAabbMm::Contain(const btDbvtAabbMm& a) const
{
return(     (mi.x()<=a.mi.x())&&
            (mi.y()<=a.mi.y())&&
            (mi.z()<=a.mi.z())&&
            (mx.x()>=a.mx.x())&&
            (mx.y()>=a.mx.y())&&
            (mx.z()>=a.mx.z()));
}

//
DBVT_INLINE int         btDbvtAabbMm::Classify(const btVector3& n,btScalar o,int s) const
{
btVector3               pi,px;
switch(s)
      {
      case  (0+0+0):    px=btVector3(mi.x(),mi.y(),mi.z());
                                    pi=btVector3(mx.x(),mx.y(),mx.z());break;
      case  (1+0+0):    px=btVector3(mx.x(),mi.y(),mi.z());
                                    pi=btVector3(mi.x(),mx.y(),mx.z());break;
      case  (0+2+0):    px=btVector3(mi.x(),mx.y(),mi.z());
                                    pi=btVector3(mx.x(),mi.y(),mx.z());break;
      case  (1+2+0):    px=btVector3(mx.x(),mx.y(),mi.z());
                                    pi=btVector3(mi.x(),mi.y(),mx.z());break;
      case  (0+0+4):    px=btVector3(mi.x(),mi.y(),mx.z());
                                    pi=btVector3(mx.x(),mx.y(),mi.z());break;
      case  (1+0+4):    px=btVector3(mx.x(),mi.y(),mx.z());
                                    pi=btVector3(mi.x(),mx.y(),mi.z());break;
      case  (0+2+4):    px=btVector3(mi.x(),mx.y(),mx.z());
                                    pi=btVector3(mx.x(),mi.y(),mi.z());break;
      case  (1+2+4):    px=btVector3(mx.x(),mx.y(),mx.z());
                                    pi=btVector3(mi.x(),mi.y(),mi.z());break;
      }
if((dot(n,px)+o)<0)           return(-1);
if((dot(n,pi)+o)>=0)    return(+1);
return(0);
}

//
DBVT_INLINE btScalar    btDbvtAabbMm::ProjectMinimum(const btVector3& v,unsigned signs) const
{
const btVector3*  b[]={&mx,&mi};
const btVector3         p(    b[(signs>>0)&1]->x(),
                                    b[(signs>>1)&1]->y(),
                                    b[(signs>>2)&1]->z());
return(dot(p,v));
}

//
DBVT_INLINE void        btDbvtAabbMm::AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const
{
for(int i=0;i<3;++i)
      {
      if(d[i]<0)
            { smi+=mx[i]*d[i];smx+=mi[i]*d[i]; }
            else
            { smi+=mi[i]*d[i];smx+=mx[i]*d[i]; }
      }
}
      
//
DBVT_INLINE bool        Intersect(  const btDbvtAabbMm& a,
                                                      const btDbvtAabbMm& b)
{
#if   DBVT_INT0_IMPL == DBVT_IMPL_SSE
const __m128      rt(_mm_or_ps(     _mm_cmplt_ps(_mm_load_ps(b.mx),_mm_load_ps(a.mi)),
                                                _mm_cmplt_ps(_mm_load_ps(a.mx),_mm_load_ps(b.mi))));
const __int32*    pu((const __int32*)&rt);
return((pu[0]|pu[1]|pu[2])==0);
#else
return(     (a.mi.x()<=b.mx.x())&&
            (a.mx.x()>=b.mi.x())&&
            (a.mi.y()<=b.mx.y())&&
            (a.mx.y()>=b.mi.y())&&
            (a.mi.z()<=b.mx.z())&&        
            (a.mx.z()>=b.mi.z()));
#endif
}

//
DBVT_INLINE bool        Intersect(  const btDbvtAabbMm& a,
                                                      const btDbvtAabbMm& b,
                                                      const btTransform& xform)
{
const btVector3         d0=xform*b.Center()-a.Center();
const btVector3         d1=d0*xform.getBasis();
btScalar                s0[2]={0,0};
btScalar                s1[2]={dot(xform.getOrigin(),d0),s1[0]};
a.AddSpan(d0,s0[0],s0[1]);
b.AddSpan(d1,s1[0],s1[1]);
if(s0[0]>(s1[1])) return(false);
if(s0[1]<(s1[0])) return(false);
return(true);
}

//
DBVT_INLINE bool        Intersect(  const btDbvtAabbMm& a,
                                                      const btVector3& b)
{
return(     (b.x()>=a.mi.x())&&
            (b.y()>=a.mi.y())&&
            (b.z()>=a.mi.z())&&
            (b.x()<=a.mx.x())&&
            (b.y()<=a.mx.y())&&
            (b.z()<=a.mx.z()));
}

//
DBVT_INLINE bool        Intersect(  const btDbvtAabbMm& a,
                                                      const btVector3& org,
                                                      const btVector3& invdir,
                                                      const unsigned* signs)
{
#if 0
const btVector3         b0((a.mi-org)*invdir);
const btVector3         b1((a.mx-org)*invdir);
const btVector3         tmin(btMin(b0[0],b1[0]),btMin(b0[1],b1[1]),btMin(b0[2],b1[2]));
const btVector3         tmax(btMax(b0[0],b1[0]),btMax(b0[1],b1[1]),btMax(b0[2],b1[2]));
const btScalar          tin=btMax(tmin[0],btMax(tmin[1],tmin[2]));
const btScalar          tout=btMin(tmax[0],btMin(tmax[1],tmax[2]));
return(tin<tout);
#else
const btVector3*  bounds[2]={&a.mi,&a.mx};
btScalar                txmin=(bounds[  signs[0]]->x()-org[0])*invdir[0];
btScalar                txmax=(bounds[1-signs[0]]->x()-org[0])*invdir[0];
const btScalar          tymin=(bounds[  signs[1]]->y()-org[1])*invdir[1];
const btScalar          tymax=(bounds[1-signs[1]]->y()-org[1])*invdir[1];
if((txmin>tymax)||(tymin>txmax)) return(false);
if(tymin>txmin) txmin=tymin;
if(tymax<txmax) txmax=tymax;
const btScalar          tzmin=(bounds[  signs[2]]->z()-org[2])*invdir[2];
const btScalar          tzmax=(bounds[1-signs[2]]->z()-org[2])*invdir[2];
if((txmin>tzmax)||(tzmin>txmax)) return(false);
if(tzmin>txmin) txmin=tzmin;
if(tzmax<txmax) txmax=tzmax;
return(txmax>0);
#endif
}
      
//
DBVT_INLINE btScalar    Proximity(  const btDbvtAabbMm& a,
                                                      const btDbvtAabbMm& b)
{
const btVector3   d=(a.mi+a.mx)-(b.mi+b.mx);
return(btFabs(d.x())+btFabs(d.y())+btFabs(d.z()));
}

//
DBVT_INLINE int               Select(     const btDbvtAabbMm& o,
                                                const btDbvtAabbMm& a,
                                                const btDbvtAabbMm& b)
{
#if   DBVT_SELECT_IMPL == DBVT_IMPL_SSE
static DBVT_ALIGN const unsigned __int32  mask[]={0x7fffffff,0x7fffffff,0x7fffffff,0x7fffffff};
      // TODO: the intrinsic version is 11% slower
      #if DBVT_USE_INTRINSIC_SSE
      __m128      omi(_mm_load_ps(o.mi));
      omi=_mm_add_ps(omi,_mm_load_ps(o.mx));
      __m128      ami(_mm_load_ps(a.mi));
      ami=_mm_add_ps(ami,_mm_load_ps(a.mx));
      ami=_mm_sub_ps(ami,omi);
      ami=_mm_and_ps(ami,_mm_load_ps((const float*)mask));
      __m128      bmi(_mm_load_ps(b.mi));
      bmi=_mm_add_ps(bmi,_mm_load_ps(b.mx));
      bmi=_mm_sub_ps(bmi,omi);
      bmi=_mm_and_ps(bmi,_mm_load_ps((const float*)mask));
      __m128      t0(_mm_movehl_ps(ami,ami));
      ami=_mm_add_ps(ami,t0);
      ami=_mm_add_ss(ami,_mm_shuffle_ps(ami,ami,1));
      __m128      t1(_mm_movehl_ps(bmi,bmi));
      bmi=_mm_add_ps(bmi,t1);
      bmi=_mm_add_ss(bmi,_mm_shuffle_ps(bmi,bmi,1));
      return(_mm_cmple_ss(bmi,ami).m128_u32[0]&1);
      #else
      DBVT_ALIGN __int32      r[1];
      __asm
            {
            mov         eax,o
            mov         ecx,a
            mov         edx,b
            movaps      xmm0,[eax]
            movaps      xmm5,mask
            addps xmm0,[eax+16]     
            movaps      xmm1,[ecx]
            movaps      xmm2,[edx]
            addps xmm1,[ecx+16]
            addps xmm2,[edx+16]
            subps xmm1,xmm0
            subps xmm2,xmm0
            andps xmm1,xmm5
            andps xmm2,xmm5
            movhlps     xmm3,xmm1
            movhlps     xmm4,xmm2
            addps xmm1,xmm3
            addps xmm2,xmm4
            pshufd      xmm3,xmm1,1
            pshufd      xmm4,xmm2,1
            addss xmm1,xmm3
            addss xmm2,xmm4
            cmpless     xmm2,xmm1
            movss r,xmm2
            }
      return(r[0]&1);
      #endif
#else
return(Proximity(o,a)<Proximity(o,b)?0:1);
#endif
}

//
DBVT_INLINE void        Merge(      const btDbvtAabbMm& a,
                                                const btDbvtAabbMm& b,
                                                btDbvtAabbMm& r)
{
#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
__m128      ami(_mm_load_ps(a.mi));
__m128      amx(_mm_load_ps(a.mx));
__m128      bmi(_mm_load_ps(b.mi));
__m128      bmx(_mm_load_ps(b.mx));
ami=_mm_min_ps(ami,bmi);
amx=_mm_max_ps(amx,bmx);
_mm_store_ps(r.mi,ami);
_mm_store_ps(r.mx,amx);
#else
for(int i=0;i<3;++i)
      {
      if(a.mi[i]<b.mi[i]) r.mi[i]=a.mi[i]; else r.mi[i]=b.mi[i];
      if(a.mx[i]>b.mx[i]) r.mx[i]=a.mx[i]; else r.mx[i]=b.mx[i];
      }
#endif
}

//
DBVT_INLINE bool        NotEqual(   const btDbvtAabbMm& a,
                                                      const btDbvtAabbMm& b)
{
return(     (a.mi.x()!=b.mi.x())||
            (a.mi.y()!=b.mi.y())||
            (a.mi.z()!=b.mi.z())||
            (a.mx.x()!=b.mx.x())||
            (a.mx.y()!=b.mx.y())||
            (a.mx.z()!=b.mx.z()));
}

//
// Inline's
//

//
DBVT_PREFIX
inline void       btDbvt::enumNodes(      const btDbvtNode* root,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
policy.Process(root);
if(root->isinternal())
      {
      enumNodes(root->childs[0],policy);
      enumNodes(root->childs[1],policy);
      }
}

//
DBVT_PREFIX
inline void       btDbvt::enumLeaves(     const btDbvtNode* root,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root->isinternal())
      {
      enumLeaves(root->childs[0],policy);
      enumLeaves(root->childs[1],policy);
      }
      else
      {
      policy.Process(root);
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideTT(      const btDbvtNode* root0,
                                                      const btDbvtNode* root1,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root0&&root1)
      {
      btAlignedObjectArray<sStkNN>  stack;
      int                                             depth=1;
      int                                             treshold=DOUBLE_STACKSIZE-4;
      stack.resize(DOUBLE_STACKSIZE);
      stack[0]=sStkNN(root0,root1);
      do    {           
            sStkNN      p=stack[--depth];
            if(depth>treshold)
                  {
                  stack.resize(stack.size()*2);
                  treshold=stack.size()-4;
                  }
            if(p.a==p.b)
                  {
                  if(p.a->isinternal())
                        {
                        stack[depth++]=sStkNN(p.a->childs[0],p.a->childs[0]);
                        stack[depth++]=sStkNN(p.a->childs[1],p.a->childs[1]);
                        stack[depth++]=sStkNN(p.a->childs[0],p.a->childs[1]);
                        }
                  }
            else if(Intersect(p.a->volume,p.b->volume))
                  {
                  if(p.a->isinternal())
                        {
                        if(p.b->isinternal())
                              {
                              stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
                              }
                              else
                              {
                              stack[depth++]=sStkNN(p.a->childs[0],p.b);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b);
                              }
                        }
                        else
                        {
                        if(p.b->isinternal())
                              {
                              stack[depth++]=sStkNN(p.a,p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a,p.b->childs[1]);
                              }
                              else
                              {
                              policy.Process(p.a,p.b);
                              }
                        }
                  }
            } while(depth);
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideTT(      const btDbvtNode* root0,
                                                      const btDbvtNode* root1,
                                                      const btTransform& xform,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root0&&root1)
      {
      btAlignedObjectArray<sStkNN>  stack;
      int                                             depth=1;
      int                                             treshold=DOUBLE_STACKSIZE-4;
      stack.resize(DOUBLE_STACKSIZE);
      stack[0]=sStkNN(root0,root1);
      do    {
            sStkNN      p=stack[--depth];
            if(Intersect(p.a->volume,p.b->volume,xform))
                  {
                  if(depth>treshold)
                        {
                        stack.resize(stack.size()*2);
                        treshold=stack.size()-4;
                        }
                  if(p.a->isinternal())
                        {
                        if(p.b->isinternal())
                              {                             
                              stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
                              }
                              else
                              {
                              stack[depth++]=sStkNN(p.a->childs[0],p.b);
                              stack[depth++]=sStkNN(p.a->childs[1],p.b);
                              }
                        }
                        else
                        {
                        if(p.b->isinternal())
                              {
                              stack[depth++]=sStkNN(p.a,p.b->childs[0]);
                              stack[depth++]=sStkNN(p.a,p.b->childs[1]);
                              }
                              else
                              {
                              policy.Process(p.a,p.b);
                              }
                        }
                  }
            } while(depth);
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideTT(      const btDbvtNode* root0,
                                                      const btTransform& xform0,
                                                      const btDbvtNode* root1,
                                                      const btTransform& xform1,
                                                      DBVT_IPOLICY)
{
const btTransform xform=xform0.inverse()*xform1;
collideTT(root0,root1,xform,policy);
}

//
DBVT_PREFIX
inline void       btDbvt::collideTV(      const btDbvtNode* root,
                                                      const btDbvtVolume& vol,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root)
      {
      ATTRIBUTE_ALIGNED16(btDbvtVolume)         volume(vol);
      btAlignedObjectArray<const btDbvtNode*>   stack;
      stack.reserve(SIMPLE_STACKSIZE);
      stack.push_back(root);
      do    {
            const btDbvtNode* n=stack[stack.size()-1];
            stack.pop_back();
            if(Intersect(n->volume,volume))
                  {
                  if(n->isinternal())
                        {
                        stack.push_back(n->childs[0]);
                        stack.push_back(n->childs[1]);
                        }
                        else
                        {
                        policy.Process(n);
                        }
                  }
            } while(stack.size()>0);
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideRAY(     const btDbvtNode* root,
                                                      const btVector3& origin,
                                                      const btVector3& direction,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root)
      {
      const btVector3   normal=direction.normalized();
      const btVector3   invdir(     1/normal.x(),
                                          1/normal.y(),
                                          1/normal.z());
      const unsigned    signs[]={   direction.x()<0,
                                                direction.y()<0,
                                                direction.z()<0};
      btAlignedObjectArray<const btDbvtNode*>   stack;
      stack.reserve(SIMPLE_STACKSIZE);
      stack.push_back(root);
      do    {
            const btDbvtNode* node=stack[stack.size()-1];
            stack.pop_back();
            if(Intersect(node->volume,origin,invdir,signs))
                  {
                  if(node->isinternal())
                        {
                        stack.push_back(node->childs[0]);
                        stack.push_back(node->childs[1]);
                        }
                        else
                        {
                        policy.Process(node);
                        }
                  }
            } while(stack.size());
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideKDOP(const btDbvtNode* root,
                                                      const btVector3* normals,
                                                      const btScalar* offsets,
                                                      int count,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root)
      {
      const int                                 inside=(1<<count)-1;
      btAlignedObjectArray<sStkNP>  stack;
      int                                             signs[sizeof(unsigned)*8];
      btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
      for(int i=0;i<count;++i)
            {
            signs[i]=   ((normals[i].x()>=0)?1:0)+
                              ((normals[i].y()>=0)?2:0)+
                              ((normals[i].z()>=0)?4:0);
            }
      stack.reserve(SIMPLE_STACKSIZE);
      stack.push_back(sStkNP(root,0));
      do    {
            sStkNP      se=stack[stack.size()-1];
            bool  out=false;
            stack.pop_back();
            for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
                  {
                  if(0==(se.mask&j))
                        {
                        const int   side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
                        switch(side)
                              {
                              case  -1:   out=true;break;
                              case  +1:   se.mask|=j;break;
                              }
                        }
                  }
            if(!out)
                  {
                  if((se.mask!=inside)&&(se.node->isinternal()))
                        {
                        stack.push_back(sStkNP(se.node->childs[0],se.mask));
                        stack.push_back(sStkNP(se.node->childs[1],se.mask));
                        }
                        else
                        {
                        if(policy.AllLeaves(se.node)) enumLeaves(se.node,policy);
                        }
                  }
            } while(stack.size());
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideOCL(     const btDbvtNode* root,
                                                      const btVector3* normals,
                                                      const btScalar* offsets,
                                                      const btVector3& sortaxis,
                                                      int count,
                                                      DBVT_IPOLICY,
                                                      bool fsort)
{
DBVT_CHECKTYPE
if(root)
      {
      const unsigned                            srtsgns=(sortaxis[0]>=0?1:0)+
                                                                  (sortaxis[1]>=0?2:0)+
                                                                  (sortaxis[2]>=0?4:0);
      const int                                 inside=(1<<count)-1;
      btAlignedObjectArray<sStkNPS> stock;
      btAlignedObjectArray<int>           ifree;
      btAlignedObjectArray<int>           stack;
      int                                             signs[sizeof(unsigned)*8];
      btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
      for(int i=0;i<count;++i)
            {
            signs[i]=   ((normals[i].x()>=0)?1:0)+
                              ((normals[i].y()>=0)?2:0)+
                              ((normals[i].z()>=0)?4:0);
            }
      stock.reserve(SIMPLE_STACKSIZE);
      stack.reserve(SIMPLE_STACKSIZE);
      ifree.reserve(SIMPLE_STACKSIZE);
      stack.push_back(allocate(ifree,stock,sStkNPS(root,0,root->volume.ProjectMinimum(sortaxis,srtsgns))));
      do    {
            const int   id=stack[stack.size()-1];
            sStkNPS           se=stock[id];
            stack.pop_back();ifree.push_back(id);
            if(se.mask!=inside)
                  {
                  bool  out=false;
                  for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
                        {
                        if(0==(se.mask&j))
                              {
                              const int   side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
                              switch(side)
                                    {
                                    case  -1:   out=true;break;
                                    case  +1:   se.mask|=j;break;
                                    }
                              }
                        }
                  if(out) continue;
                  }
            if(policy.Descent(se.node))
                  {
                  if(se.node->isinternal())
                        {
                        const btDbvtNode* pns[]={     se.node->childs[0],se.node->childs[1]};
                        sStkNPS           nes[]={     sStkNPS(pns[0],se.mask,pns[0]->volume.ProjectMinimum(sortaxis,srtsgns)),
                                                      sStkNPS(pns[1],se.mask,pns[1]->volume.ProjectMinimum(sortaxis,srtsgns))};
                        const int   q=nes[0].value<nes[1].value?1:0;                      
                        int               j=stack.size();
                        if(fsort&&(j>0))
                              {
                              /* Insert 0 */ 
                              j=nearest(&stack[0],&stock[0],nes[q].value,0,stack.size());
                              stack.push_back(0);
                              #if DBVT_USE_MEMMOVE
                              memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
                              #else
                              for(int k=stack.size()-1;k>j;--k) stack[k]=stack[k-1];
                              #endif
                              stack[j]=allocate(ifree,stock,nes[q]);
                              /* Insert 1 */ 
                              j=nearest(&stack[0],&stock[0],nes[1-q].value,j,stack.size());
                              stack.push_back(0);
                              #if DBVT_USE_MEMMOVE
                              memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
                              #else
                              for(int k=stack.size()-1;k>j;--k) stack[k]=stack[k-1];
                              #endif
                              stack[j]=allocate(ifree,stock,nes[1-q]);
                              }
                              else
                              {
                              stack.push_back(allocate(ifree,stock,nes[q]));
                              stack.push_back(allocate(ifree,stock,nes[1-q]));
                              }
                        }
                        else
                        {
                        policy.Process(se.node,se.value);
                        }
                  }
            } while(stack.size());
      }
}

//
DBVT_PREFIX
inline void       btDbvt::collideTU(      const btDbvtNode* root,
                                                      DBVT_IPOLICY)
{
DBVT_CHECKTYPE
if(root)
      {
      btAlignedObjectArray<const btDbvtNode*>   stack;
      stack.reserve(SIMPLE_STACKSIZE);
      stack.push_back(root);
      do    {
            const btDbvtNode* n=stack[stack.size()-1];
            stack.pop_back();
            if(policy.Descent(n))
                  {
                  if(n->isinternal())
                        { stack.push_back(n->childs[0]);stack.push_back(n->childs[1]); }
                        else
                        { policy.Process(n); }
                  }
            } while(stack.size()>0);
      }
}

//
// PP Cleanup
//

#undef DBVT_USE_MEMMOVE
#undef DBVT_USE_TEMPLATE
#undef DBVT_VIRTUAL_DTOR
#undef DBVT_VIRTUAL
#undef DBVT_PREFIX
#undef DBVT_IPOLICY
#undef DBVT_CHECKTYPE
#undef DBVT_IMPL_GENERIC
#undef DBVT_IMPL_SSE
#undef DBVT_USE_INTRINSIC_SSE
#undef DBVT_SELECT_IMPL
#undef DBVT_MERGE_IMPL
#undef DBVT_INT0_IMPL

#endif

Generated by  Doxygen 1.6.0   Back to index