Logo Search packages:      
Sourcecode: blender version File versions  Download package

btConvexConvexAlgorithm.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btConvexConvexAlgorithm.h"

//#include <stdio.h>
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"

#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"



#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"

#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"

#include "BulletCollision/NarrowPhaseCollision/btGjkEpa.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"









btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface*                 simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
{
      m_simplexSolver = simplexSolver;
      m_pdSolver = pdSolver;
}

btConvexConvexAlgorithm::CreateFunc::~CreateFunc() 
{ 
}

btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
: btCollisionAlgorithm(ci),
m_gjkPairDetector(0,0,simplexSolver,pdSolver),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false)
{
      (void)body0;
      (void)body1;


}




btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
{
      if (m_ownManifold)
      {
            if (m_manifoldPtr)
                  m_dispatcher->releaseManifold(m_manifoldPtr);
      }
}

void  btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
      m_lowLevelOfDetail = useLowLevel;
}





//
// Convex-Convex collision algorithm
//
void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{

      if (!m_manifoldPtr)
      {
            //swapped?
            m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
            m_ownManifold = true;
      }
      resultOut->setPersistentManifold(m_manifoldPtr);

#ifdef USE_BT_GJKEPA
      btConvexShape*                      shape0(static_cast<btConvexShape*>(body0->getCollisionShape()));
      btConvexShape*                      shape1(static_cast<btConvexShape*>(body1->getCollisionShape()));
      const btScalar                      radialmargin(0/*shape0->getMargin()+shape1->getMargin()*/);
      btGjkEpaSolver::sResults      results;
      if(btGjkEpaSolver::Collide(   shape0,body0->getWorldTransform(),
                                                shape1,body1->getWorldTransform(),
                                                radialmargin,results))
            {
            dispatchInfo.m_debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
            resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
            }
#else

      btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
      btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
      
      btGjkPairDetector::ClosestPointInput input;

      //TODO: if (dispatchInfo.m_useContinuous)
      m_gjkPairDetector.setMinkowskiA(min0);
      m_gjkPairDetector.setMinkowskiB(min1);
      input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
      input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
      input.m_stackAlloc = dispatchInfo.m_stackAllocator;

//    input.m_maximumDistanceSquared = btScalar(1e30);
      
      input.m_transformA = body0->getWorldTransform();
      input.m_transformB = body1->getWorldTransform();
      
      m_gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#endif

      if (m_ownManifold)
      {
            resultOut->refreshContactPoints();
      }

}



bool disableCcd = false;
00154 btScalar    btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
      (void)resultOut;
      (void)dispatchInfo;
      ///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
    
      ///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
      ///col0->m_worldTransform,
      btScalar resultFraction = btScalar(1.);


      btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
      btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
    
      if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
            squareMot1 < col1->getCcdSquareMotionThreshold())
            return resultFraction;

      if (disableCcd)
            return btScalar(1.);


      //An adhoc way of testing the Continuous Collision Detection algorithms
      //One object is approximated as a sphere, to simplify things
      //Starting in penetration should report no time of impact
      //For proper CCD, better accuracy and handling of 'allowed' penetration should be added
      //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)

            
      /// Convex0 against sphere for Convex1
      {
            btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());

            btSphereShape     sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
            btConvexCast::CastResult result;
            btVoronoiSimplexSolver voronoiSimplex;
            //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
            ///Simplification, one object is simplified as a sphere
            btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
            //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
            if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
                  col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
            {
            
                  //store result.m_fraction in both bodies
            
                  if (col0->getHitFraction()> result.m_fraction)
                        col0->setHitFraction( result.m_fraction );

                  if (col1->getHitFraction() > result.m_fraction)
                        col1->setHitFraction( result.m_fraction);

                  if (resultFraction > result.m_fraction)
                        resultFraction = result.m_fraction;

            }
            
            


      }

      /// Sphere (for convex0) against Convex1
      {
            btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());

            btSphereShape     sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
            btConvexCast::CastResult result;
            btVoronoiSimplexSolver voronoiSimplex;
            //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
            ///Simplification, one object is simplified as a sphere
            btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
            //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
            if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
                  col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
            {
            
                  //store result.m_fraction in both bodies
            
                  if (col0->getHitFraction()    > result.m_fraction)
                        col0->setHitFraction( result.m_fraction);

                  if (col1->getHitFraction() > result.m_fraction)
                        col1->setHitFraction( result.m_fraction);

                  if (resultFraction > result.m_fraction)
                        resultFraction = result.m_fraction;

            }
      }
      
      return resultFraction;

}


Generated by  Doxygen 1.6.0   Back to index