Logo Search packages:      
Sourcecode: blender version File versions

t1fv_9.c

/*
 * Copyright (c) 2003, 2006 Matteo Frigo
 * Copyright (c) 2003, 2006 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sat Jul  1 14:46:08 EDT 2006 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */

/*
 * This function contains 54 FP additions, 54 FP multiplications,
 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
 * 67 stack variables, and 18 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $
 */

#include "t1f.h"

static const R *t1fv_9(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
     DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
     DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
     DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
     DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
     DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
     DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
     DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
     DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
     DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
     DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
     DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
     DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
     DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
     DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
     DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
     DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
     INT i;
     R *x;
     x = ri;
     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(ios)) {
        V T1, T3, T5, T9, Th, Tb, Td, Tj, Tl, TD, T6;
        T1 = LD(&(x[0]), dist, &(x[0]));
        {
             V T2, T4, T8, Tg;
             T2 = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));
             T4 = LD(&(x[WS(ios, 6)]), dist, &(x[0]));
             T8 = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));
             Tg = LD(&(x[WS(ios, 2)]), dist, &(x[0]));
             {
                V Ta, Tc, Ti, Tk;
                Ta = LD(&(x[WS(ios, 4)]), dist, &(x[0]));
                Tc = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));
                Ti = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));
                Tk = LD(&(x[WS(ios, 8)]), dist, &(x[0]));
                T3 = BYTWJ(&(W[TWVL * 4]), T2);
                T5 = BYTWJ(&(W[TWVL * 10]), T4);
                T9 = BYTWJ(&(W[0]), T8);
                Th = BYTWJ(&(W[TWVL * 2]), Tg);
                Tb = BYTWJ(&(W[TWVL * 6]), Ta);
                Td = BYTWJ(&(W[TWVL * 12]), Tc);
                Tj = BYTWJ(&(W[TWVL * 8]), Ti);
                Tl = BYTWJ(&(W[TWVL * 14]), Tk);
             }
        }
        TD = VSUB(T5, T3);
        T6 = VADD(T3, T5);
        {
             V Tt, Te, Tu, Tm, Tr, T7;
             Tt = VSUB(Tb, Td);
             Te = VADD(Tb, Td);
             Tu = VSUB(Tl, Tj);
             Tm = VADD(Tj, Tl);
             Tr = VFNMS(LDK(KP500000000), T6, T1);
             T7 = VADD(T1, T6);
             {
                V Tv, Tf, Ts, Tn;
                Tv = VFNMS(LDK(KP500000000), Te, T9);
                Tf = VADD(T9, Te);
                Ts = VFNMS(LDK(KP500000000), Tm, Th);
                Tn = VADD(Th, Tm);
                {
                   V TG, TK, Tw, TJ, TF, TA, To, Tq;
                   TG = VFNMS(LDK(KP726681596), Tt, Tv);
                   TK = VFMA(LDK(KP968908795), Tv, Tt);
                   Tw = VFNMS(LDK(KP586256827), Tv, Tu);
                   TJ = VFNMS(LDK(KP152703644), Tu, Ts);
                   TF = VFMA(LDK(KP203604859), Ts, Tu);
                   TA = VFNMS(LDK(KP439692620), Tt, Ts);
                   To = VADD(Tf, Tn);
                   Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf));
                   {
                        V TQ, TH, TL, TN, TB, Tp, Ty, TI, Tx;
                        Tx = VFNMS(LDK(KP347296355), Tw, Tt);
                        TQ = VFNMS(LDK(KP898197570), TG, TF);
                        TH = VFMA(LDK(KP898197570), TG, TF);
                        TL = VFMA(LDK(KP673648177), TK, TJ);
                        TN = VFNMS(LDK(KP673648177), TK, TJ);
                        TB = VFNMS(LDK(KP420276625), TA, Tu);
                        ST(&(x[0]), VADD(T7, To), dist, &(x[0]));
                        Tp = VFNMS(LDK(KP500000000), To, T7);
                        Ty = VFNMS(LDK(KP907603734), Tx, Ts);
                        TI = VFMA(LDK(KP852868531), TH, Tr);
                        {
                           V TO, TR, TM, TC, Tz, TP, TS, TE;
                           TO = VFNMS(LDK(KP500000000), TH, TN);
                           TR = VFMA(LDK(KP666666666), TL, TQ);
                           TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL));
                           TC = VFNMS(LDK(KP826351822), TB, Tv);
                           ST(&(x[WS(ios, 6)]), VFNMSI(Tq, Tp), dist, &(x[0]));
                           ST(&(x[WS(ios, 3)]), VFMAI(Tq, Tp), dist, &(x[WS(ios, 1)]));
                           Tz = VFNMS(LDK(KP939692620), Ty, Tr);
                           TP = VFMA(LDK(KP852868531), TO, Tr);
                           TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD));
                           ST(&(x[WS(ios, 8)]), VFMAI(TM, TI), dist, &(x[0]));
                           ST(&(x[WS(ios, 1)]), VFNMSI(TM, TI), dist, &(x[WS(ios, 1)]));
                           TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC));
                           ST(&(x[WS(ios, 4)]), VFMAI(TS, TP), dist, &(x[0]));
                           ST(&(x[WS(ios, 5)]), VFNMSI(TS, TP), dist, &(x[WS(ios, 1)]));
                           ST(&(x[WS(ios, 7)]), VFMAI(TE, Tz), dist, &(x[WS(ios, 1)]));
                           ST(&(x[WS(ios, 2)]), VFNMSI(TE, Tz), dist, &(x[0]));
                        }
                   }
                }
             }
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(2),
     VTW(3),
     VTW(4),
     VTW(5),
     VTW(6),
     VTW(7),
     VTW(8),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 9, "t1fv_9", twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };

void X(codelet_t1fv_9) (planner *p) {
     X(kdft_dit_register) (p, t1fv_9, &desc);
}
#else                   /* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */

/*
 * This function contains 54 FP additions, 42 FP multiplications,
 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
 * 38 stack variables, and 18 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $
 * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $
 * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $
 */

#include "t1f.h"

static const R *t1fv_9(R *ri, R *ii, const R *W, stride ios, INT m, INT dist)
{
     DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
     DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
     DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
     DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
     DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
     DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
     DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
     DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
     DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
     DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
     DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
     DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
     INT i;
     R *x;
     x = ri;
     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(ios)) {
        V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv;
        T1 = LD(&(x[0]), dist, &(x[0]));
        {
             V T3, T5, T2, T4;
             T2 = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));
             T3 = BYTWJ(&(W[TWVL * 4]), T2);
             T4 = LD(&(x[WS(ios, 6)]), dist, &(x[0]));
             T5 = BYTWJ(&(W[TWVL * 10]), T4);
             T6 = VADD(T3, T5);
             TA = VMUL(LDK(KP866025403), VSUB(T5, T3));
        }
        {
             V T9, Td, Tb, T8, Tc, Ta, Te;
             T8 = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));
             T9 = BYTWJ(&(W[0]), T8);
             Tc = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));
             Td = BYTWJ(&(W[TWVL * 12]), Tc);
             Ta = LD(&(x[WS(ios, 4)]), dist, &(x[0]));
             Tb = BYTWJ(&(W[TWVL * 6]), Ta);
             Tt = VSUB(Td, Tb);
             Te = VADD(Tb, Td);
             Tf = VADD(T9, Te);
             Ts = VFNMS(LDK(KP500000000), Te, T9);
        }
        {
             V Th, Tl, Tj, Tg, Tk, Ti, Tm;
             Tg = LD(&(x[WS(ios, 2)]), dist, &(x[0]));
             Th = BYTWJ(&(W[TWVL * 2]), Tg);
             Tk = LD(&(x[WS(ios, 8)]), dist, &(x[0]));
             Tl = BYTWJ(&(W[TWVL * 14]), Tk);
             Ti = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));
             Tj = BYTWJ(&(W[TWVL * 8]), Ti);
             Tw = VSUB(Tl, Tj);
             Tm = VADD(Tj, Tl);
             Tn = VADD(Th, Tm);
             Tv = VFNMS(LDK(KP500000000), Tm, Th);
        }
        {
             V Tq, T7, To, Tp;
             Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf)));
             T7 = VADD(T1, T6);
             To = VADD(Tf, Tn);
             Tp = VFNMS(LDK(KP500000000), To, T7);
             ST(&(x[0]), VADD(T7, To), dist, &(x[0]));
             ST(&(x[WS(ios, 3)]), VADD(Tp, Tq), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 6)]), VSUB(Tp, Tq), dist, &(x[0]));
        }
        {
             V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH;
             TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA));
             TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt));
             TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw));
             TD = VADD(TB, TC);
             Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt));
             Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw));
             Ty = VADD(Tu, Tx);
             Tr = VFNMS(LDK(KP500000000), T6, T1);
             TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr))));
             ST(&(x[WS(ios, 7)]), VSUB(TH, TI), dist, &(x[WS(ios, 1)]));
             ST(&(x[WS(ios, 2)]), VADD(TH, TI), dist, &(x[0]));
             {
                V Tz, TE, TF, TG;
                Tz = VADD(Tr, Ty);
                TE = VBYI(VADD(TA, TD));
                ST(&(x[WS(ios, 8)]), VSUB(Tz, TE), dist, &(x[0]));
                ST(&(x[WS(ios, 1)]), VADD(TE, Tz), dist, &(x[WS(ios, 1)]));
                TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr));
                TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu)))));
                ST(&(x[WS(ios, 5)]), VSUB(TF, TG), dist, &(x[WS(ios, 1)]));
                ST(&(x[WS(ios, 4)]), VADD(TF, TG), dist, &(x[0]));
             }
        }
     }
     return W;
}

static const tw_instr twinstr[] = {
     VTW(1),
     VTW(2),
     VTW(3),
     VTW(4),
     VTW(5),
     VTW(6),
     VTW(7),
     VTW(8),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 9, "t1fv_9", twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };

void X(codelet_t1fv_9) (planner *p) {
     X(kdft_dit_register) (p, t1fv_9, &desc);
}
#endif                        /* HAVE_FMA */

Generated by  Doxygen 1.6.0   Back to index