Logo Search packages:      
Sourcecode: blender version File versions

btOptimizedBvh.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btOptimizedBvh.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btIDebugDraw.h"



btOptimizedBvh::btOptimizedBvh() : m_useQuantization(false), 
                              m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
                              //m_traversalMode(TRAVERSAL_STACKLESS)
                              //m_traversalMode(TRAVERSAL_RECURSIVE)
{ 

}


void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
{
      m_useQuantization = useQuantizedAabbCompression;


      // NodeArray      triangleNodes;

      struct      NodeTriangleCallback : public btInternalTriangleIndexCallback
      {

            NodeArray&  m_triangleNodes;

            NodeTriangleCallback& operator=(NodeTriangleCallback& other)
            {
                  m_triangleNodes = other.m_triangleNodes;
                  return *this;
            }
            
            NodeTriangleCallback(NodeArray&     triangleNodes)
                  :m_triangleNodes(triangleNodes)
            {
            }

            virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
            {
                  btOptimizedBvhNode node;
                  btVector3   aabbMin,aabbMax;
                  aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                  aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                  aabbMin.setMin(triangle[0]);
                  aabbMax.setMax(triangle[0]);
                  aabbMin.setMin(triangle[1]);
                  aabbMax.setMax(triangle[1]);
                  aabbMin.setMin(triangle[2]);
                  aabbMax.setMax(triangle[2]);

                  //with quantization?
                  node.m_aabbMinOrg = aabbMin;
                  node.m_aabbMaxOrg = aabbMax;

                  node.m_escapeIndex = -1;
      
                  //for child nodes
                  node.m_subPart = partId;
                  node.m_triangleIndex = triangleIndex;
                  m_triangleNodes.push_back(node);
            }
      };
      struct      QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
      {
            QuantizedNodeArray&     m_triangleNodes;
            const btOptimizedBvh* m_optimizedTree; // for quantization

            QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
            {
                  m_triangleNodes = other.m_triangleNodes;
                  m_optimizedTree = other.m_optimizedTree;
                  return *this;
            }

            QuantizedNodeTriangleCallback(QuantizedNodeArray&     triangleNodes,const btOptimizedBvh* tree)
                  :m_triangleNodes(triangleNodes),m_optimizedTree(tree)
            {
            }

            virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
            {
                  btAssert(partId==0);
                  //negative indices are reserved for escapeIndex
                  btAssert(triangleIndex>=0);

                  btQuantizedBvhNode node;
                  btVector3   aabbMin,aabbMax;
                  aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                  aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                  aabbMin.setMin(triangle[0]);
                  aabbMax.setMax(triangle[0]);
                  aabbMin.setMin(triangle[1]);
                  aabbMax.setMax(triangle[1]);
                  aabbMin.setMin(triangle[2]);
                  aabbMax.setMax(triangle[2]);

                  m_optimizedTree->quantizeWithClamp(&node.m_quantizedAabbMin[0],aabbMin);
                  m_optimizedTree->quantizeWithClamp(&node.m_quantizedAabbMax[0],aabbMax);

                  node.m_escapeIndexOrTriangleIndex = triangleIndex;

                  m_triangleNodes.push_back(node);
            }
      };
      


      int numLeafNodes = 0;

      
      if (m_useQuantization)
      {

            //initialize quantization values
            setQuantizationValues(bvhAabbMin,bvhAabbMax);

            QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this);

      
            triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);

            //now we have an array of leafnodes in m_leafNodes
            numLeafNodes = m_quantizedLeafNodes.size();


            m_quantizedContiguousNodes.resize(2*numLeafNodes);


      } else
      {
            NodeTriangleCallback    callback(m_leafNodes);

            btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
            btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));

            triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);

            //now we have an array of leafnodes in m_leafNodes
            numLeafNodes = m_leafNodes.size();

            m_contiguousNodes.resize(2*numLeafNodes);
      }

      m_curNodeIndex = 0;

      buildTree(0,numLeafNodes);

      ///if the entire tree is small then subtree size, we need to create a header info for the tree
      if(m_useQuantization && !m_SubtreeHeaders.size())
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
            subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
            subtree.m_rootNodeIndex = 0;
            subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
      }
}



void  btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
      //incrementally initialize quantization values
      btAssert(m_useQuantization);

      btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
      btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
      btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());

      btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
      btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
      btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());

      ///we should update all quantization values, using updateBvhNodes(meshInterface);
      ///but we only update chunks that overlap the given aabb
      
      unsigned short    quantizedQueryAabbMin[3];
      unsigned short    quantizedQueryAabbMax[3];

      quantizeWithClamp(&quantizedQueryAabbMin[0],aabbMin);
      quantizeWithClamp(&quantizedQueryAabbMax[0],aabbMax);

      int i;
      for (i=0;i<this->m_SubtreeHeaders.size();i++)
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];

            bool overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
            if (overlap)
            {
                  updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);

                  subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
            }
      }
      
}

///just for debugging, to visualize the individual patches/subtrees
#ifdef DEBUG_PATCH_COLORS
btVector3 color[4]=
{
      btVector3(255,0,0),
      btVector3(0,255,0),
      btVector3(0,0,255),
      btVector3(0,255,255)
};
#endif //DEBUG_PATCH_COLORS


void  btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
{
      (void)index;

      btAssert(m_useQuantization);

      int nodeSubPart=0;

      //get access info to trianglemesh data
            const unsigned char *vertexbase;
            int numverts;
            PHY_ScalarType type;
            int stride;
            const unsigned char *indexbase;
            int indexstride;
            int numfaces;
            PHY_ScalarType indicestype;
            meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,   type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);

            btVector3   triangleVerts[3];
            btVector3   aabbMin,aabbMax;
            const btVector3& meshScaling = meshInterface->getScaling();
            
            int i;
            for (i=endNode-1;i>=firstNode;i--)
            {


                  btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
                  if (curNode.isLeafNode())
                  {
                        //recalc aabb from triangle data
                        int nodeTriangleIndex = curNode.getTriangleIndex();
                        //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,

                        int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
                        
                        
                        for (int j=2;j>=0;j--)
                        {
                              
                              int graphicsindex = gfxbase[j];
                              btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
#ifdef DEBUG_PATCH_COLORS
                              btVector3 mycolor = color[index&3];
                              graphicsbase[8] = mycolor.getX();
                              graphicsbase[9] = mycolor.getY();
                              graphicsbase[10] = mycolor.getZ();
#endif //DEBUG_PATCH_COLORS


                              triangleVerts[j] = btVector3(
                                    graphicsbase[0]*meshScaling.getX(),
                                    graphicsbase[1]*meshScaling.getY(),
                                    graphicsbase[2]*meshScaling.getZ());
                        }


                        
                        aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30));
                        aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); 
                        aabbMin.setMin(triangleVerts[0]);
                        aabbMax.setMax(triangleVerts[0]);
                        aabbMin.setMin(triangleVerts[1]);
                        aabbMax.setMax(triangleVerts[1]);
                        aabbMin.setMin(triangleVerts[2]);
                        aabbMax.setMax(triangleVerts[2]);

                        quantizeWithClamp(&curNode.m_quantizedAabbMin[0],aabbMin);
                        quantizeWithClamp(&curNode.m_quantizedAabbMax[0],aabbMax);
                        
                  } else
                  {
                        //combine aabb from both children

                        btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
                        
                        btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
                              &m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
                        

                        {
                              for (int i=0;i<3;i++)
                              {
                                    curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
                                    if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
                                          curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];

                                    curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
                                    if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
                                          curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
                              }
                        }
                  }

            }

            meshInterface->unLockReadOnlyVertexBase(nodeSubPart);

            
}

void  btOptimizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin)
{
      //enlarge the AABB to avoid division by zero when initializing the quantization values
      btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
      m_bvhAabbMin = bvhAabbMin - clampValue;
      m_bvhAabbMax = bvhAabbMax + clampValue;
      btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin;
      m_bvhQuantization = btVector3(btScalar(65535.0),btScalar(65535.0),btScalar(65535.0)) / aabbSize;
}


void  btOptimizedBvh::refit(btStridingMeshInterface* meshInterface)
{
      if (m_useQuantization)
      {
            //calculate new aabb
            btVector3 aabbMin,aabbMax;
            meshInterface->calculateAabbBruteForce(aabbMin,aabbMax);

            setQuantizationValues(aabbMin,aabbMax);

            updateBvhNodes(meshInterface,0,m_curNodeIndex,0);

            ///now update all subtree headers

            int i;
            for (i=0;i<m_SubtreeHeaders.size();i++)
            {
                  btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
                  subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
            }

      } else
      {

      }
}



btOptimizedBvh::~btOptimizedBvh()
{
}

#ifdef DEBUG_TREE_BUILDING
int gStackDepth = 0;
int gMaxStackDepth = 0;
#endif //DEBUG_TREE_BUILDING

void  btOptimizedBvh::buildTree     (int startIndex,int endIndex)
{
#ifdef DEBUG_TREE_BUILDING
      gStackDepth++;
      if (gStackDepth > gMaxStackDepth)
            gMaxStackDepth = gStackDepth;
#endif //DEBUG_TREE_BUILDING


      int splitAxis, splitIndex, i;
      int numIndices =endIndex-startIndex;
      int curIndex = m_curNodeIndex;

      assert(numIndices>0);

      if (numIndices==1)
      {
#ifdef DEBUG_TREE_BUILDING
            gStackDepth--;
#endif //DEBUG_TREE_BUILDING
            
            assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex);

            m_curNodeIndex++;
            return;     
      }
      //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
      
      splitAxis = calcSplittingAxis(startIndex,endIndex);

      splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis);

      int internalNodeIndex = m_curNodeIndex;
      
      setInternalNodeAabbMax(m_curNodeIndex,btVector3(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)));
      setInternalNodeAabbMin(m_curNodeIndex,btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30)));
      
      for (i=startIndex;i<endIndex;i++)
      {
            mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i));
      }

      m_curNodeIndex++;
      

      //internalNode->m_escapeIndex;
      
      int leftChildNodexIndex = m_curNodeIndex;

      //build left child tree
      buildTree(startIndex,splitIndex);

      int rightChildNodexIndex = m_curNodeIndex;
      //build right child tree
      buildTree(splitIndex,endIndex);

#ifdef DEBUG_TREE_BUILDING
      gStackDepth--;
#endif //DEBUG_TREE_BUILDING

      int escapeIndex = m_curNodeIndex - curIndex;

      if (m_useQuantization)
      {
            //escapeIndex is the number of nodes of this subtree
            const int sizeQuantizedNode =sizeof(btQuantizedBvhNode);
            const int treeSizeInBytes = escapeIndex * sizeQuantizedNode;
            if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES)
            {
                  updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex);
            }
      }

      setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex);

}

void  btOptimizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex)
{
      btAssert(m_useQuantization);

      btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex];
      int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex();
      int leftSubTreeSizeInBytes =  leftSubTreeSize * sizeof(btQuantizedBvhNode);
      
      btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex];
      int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex();
      int rightSubTreeSizeInBytes =  rightSubTreeSize * sizeof(btQuantizedBvhNode);

      if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
            subtree.setAabbFromQuantizeNode(leftChildNode);
            subtree.m_rootNodeIndex = leftChildNodexIndex;
            subtree.m_subtreeSize = leftSubTreeSize;
      }

      if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
      {
            btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
            subtree.setAabbFromQuantizeNode(rightChildNode);
            subtree.m_rootNodeIndex = rightChildNodexIndex;
            subtree.m_subtreeSize = rightSubTreeSize;
      }
}


int   btOptimizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis)
{
      int i;
      int splitIndex =startIndex;
      int numIndices = endIndex - startIndex;
      btScalar splitValue;

      btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
      for (i=startIndex;i<endIndex;i++)
      {
            btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
            means+=center;
      }
      means *= (btScalar(1.)/(btScalar)numIndices);
      
      splitValue = means[splitAxis];
      
      //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
      for (i=startIndex;i<endIndex;i++)
      {
            btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
            if (center[splitAxis] > splitValue)
            {
                  //swap
                  swapLeafNodes(i,splitIndex);
                  splitIndex++;
            }
      }

      //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
      //otherwise the tree-building might fail due to stack-overflows in certain cases.
      //unbalanced1 is unsafe: it can cause stack overflows
      //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));

      //unbalanced2 should work too: always use center (perfect balanced trees)     
      //bool unbalanced2 = true;

      //this should be safe too:
      int rangeBalancedIndices = numIndices/3;
      bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
      
      if (unbalanced)
      {
            splitIndex = startIndex+ (numIndices>>1);
      }

      bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
      btAssert(!unbal);

      return splitIndex;
}


int   btOptimizedBvh::calcSplittingAxis(int startIndex,int endIndex)
{
      int i;

      btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
      btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
      int numIndices = endIndex-startIndex;

      for (i=startIndex;i<endIndex;i++)
      {
            btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
            means+=center;
      }
      means *= (btScalar(1.)/(btScalar)numIndices);
            
      for (i=startIndex;i<endIndex;i++)
      {
            btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
            btVector3 diff2 = center-means;
            diff2 = diff2 * diff2;
            variance += diff2;
      }
      variance *= (btScalar(1.)/    ((btScalar)numIndices-1)      );
      
      return variance.maxAxis();
}



void  btOptimizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
      //either choose recursive traversal (walkTree) or stackless (walkStacklessTree)


      if (m_useQuantization)
      {
            ///quantize query AABB
            unsigned short int quantizedQueryAabbMin[3];
            unsigned short int quantizedQueryAabbMax[3];
            quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
            quantizeWithClamp(quantizedQueryAabbMax,aabbMax);

            switch (m_traversalMode)
            {
            case TRAVERSAL_STACKLESS:
                        walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex);
                  break;
            case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
                        walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
                  break;
            case TRAVERSAL_RECURSIVE:
                  {
                        const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0];
                        walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
                  }
                  break;
            default:
                  //unsupported
                  btAssert(0);
            }
      } else
      {
            walkStacklessTree(nodeCallback,aabbMin,aabbMax);
      }
}


int maxIterations = 0;

void  btOptimizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
      btAssert(!m_useQuantization);

      const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0];
      int escapeIndex, curIndex = 0;
      int walkIterations = 0;
      bool aabbOverlap, isLeafNode;

      while (curIndex < m_curNodeIndex)
      {
            //catch bugs in tree data
            assert (walkIterations < m_curNodeIndex);

            walkIterations++;
            aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
            isLeafNode = rootNode->m_escapeIndex == -1;
            
            if (isLeafNode && aabbOverlap)
            {
                  nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
            } 
            
            if (aabbOverlap || isLeafNode)
            {
                  rootNode++;
                  curIndex++;
            } else
            {
                  escapeIndex = rootNode->m_escapeIndex;
                  rootNode += escapeIndex;
                  curIndex += escapeIndex;
            }
      }
      if (maxIterations < walkIterations)
            maxIterations = walkIterations;

}

/*
///this was the original recursive traversal, before we optimized towards stackless traversal
void  btOptimizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
      bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax);
      if (aabbOverlap)
      {
            isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild);
            if (isLeafNode)
            {
                  nodeCallback->processNode(rootNode);
            } else
            {
                  walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax);
                  walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax);
            }
      }

}
*/

void btOptimizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
{
      btAssert(m_useQuantization);
      
      bool aabbOverlap, isLeafNode;

      aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax);
      isLeafNode = currentNode->isLeafNode();
            
      if (aabbOverlap)
      {
            if (isLeafNode)
            {
                  nodeCallback->processNode(0,currentNode->getTriangleIndex());
            } else
            {
                  //process left and right children
                  const btQuantizedBvhNode* leftChildNode = currentNode+1;
                  walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);

                  const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex();
                  walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
            }
      }           
}







void  btOptimizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const
{
      btAssert(m_useQuantization);
      
      int curIndex = startNodeIndex;
      int walkIterations = 0;
      int subTreeSize = endNodeIndex - startNodeIndex;

      const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
      int escapeIndex;
      
      bool aabbOverlap, isLeafNode;

      while (curIndex < endNodeIndex)
      {

//#define VISUALLY_ANALYZE_BVH 1
#ifdef VISUALLY_ANALYZE_BVH
            //some code snippet to debugDraw aabb, to visually analyze bvh structure
            static int drawPatch = 0;
            //need some global access to a debugDrawer
            extern btIDebugDraw* debugDrawerPtr;
            if (curIndex==drawPatch)
            {
                  btVector3 aabbMin,aabbMax;
                  aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
                  aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
                  btVector3   color(1,0,0);
                  debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
            }
#endif//VISUALLY_ANALYZE_BVH

            //catch bugs in tree data
            assert (walkIterations < subTreeSize);

            walkIterations++;
            aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
            isLeafNode = rootNode->isLeafNode();
            
            if (isLeafNode && aabbOverlap)
            {
                  nodeCallback->processNode(0,rootNode->getTriangleIndex());
            } 
            
            if (aabbOverlap || isLeafNode)
            {
                  rootNode++;
                  curIndex++;
            } else
            {
                  escapeIndex = rootNode->getEscapeIndex();
                  rootNode += escapeIndex;
                  curIndex += escapeIndex;
            }
      }
      if (maxIterations < walkIterations)
            maxIterations = walkIterations;

}

//This traversal can be called from Playstation 3 SPU
void  btOptimizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
{
      btAssert(m_useQuantization);

      int i;


      for (i=0;i<this->m_SubtreeHeaders.size();i++)
      {
            const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];

            bool overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
            if (overlap)
            {
                  walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
                        subtree.m_rootNodeIndex,
                        subtree.m_rootNodeIndex+subtree.m_subtreeSize);
            }
      }
}




void  btOptimizedBvh::reportSphereOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
{
      (void)nodeCallback;
      (void)aabbMin;
      (void)aabbMax;
      //not yet, please use aabb
      btAssert(0);
}


void btOptimizedBvh::quantizeWithClamp(unsigned short* out, const btVector3& point) const
{

      btAssert(m_useQuantization);

      btVector3 clampedPoint(point);
      clampedPoint.setMax(m_bvhAabbMin);
      clampedPoint.setMin(m_bvhAabbMax);

      btVector3 v = (clampedPoint - m_bvhAabbMin) * m_bvhQuantization;
      out[0] = (unsigned short)(v.getX()+0.5f);
      out[1] = (unsigned short)(v.getY()+0.5f);
      out[2] = (unsigned short)(v.getZ()+0.5f);       
}

btVector3   btOptimizedBvh::unQuantize(const unsigned short* vecIn) const
{
      btVector3   vecOut;
      vecOut.setValue(
            (btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
            (btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
            (btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
      vecOut += m_bvhAabbMin;
      return vecOut;
}


void  btOptimizedBvh::swapLeafNodes(int i,int splitIndex)
{
      if (m_useQuantization)
      {
                  btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
                  m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
                  m_quantizedLeafNodes[splitIndex] = tmp;
      } else
      {
                  btOptimizedBvhNode tmp = m_leafNodes[i];
                  m_leafNodes[i] = m_leafNodes[splitIndex];
                  m_leafNodes[splitIndex] = tmp;
      }
}

void  btOptimizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex)
{
      if (m_useQuantization)
      {
            m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex];
      } else
      {
            m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex];
      }
}

Generated by  Doxygen 1.6.0   Back to index