Logo Search packages:      
Sourcecode: blender version File versions  Download package

btRigidBody.h

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef RIGIDBODY_H
#define RIGIDBODY_H

#include "../../LinearMath/btAlignedObjectArray.h"
#include "../../LinearMath/btPoint3.h"
#include "../../LinearMath/btTransform.h"
#include "../../BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "../../BulletCollision/CollisionDispatch/btCollisionObject.h"

class btCollisionShape;
class btMotionState;
class btTypedConstraint;


extern btScalar gLinearAirDamping;

extern btScalar gDeactivationTime;
extern bool gDisableDeactivation;
extern btScalar gLinearSleepingThreshold;
extern btScalar gAngularSleepingThreshold;


/// btRigidBody class for btRigidBody Dynamics
/// 
00040 class btRigidBody  : public btCollisionObject
{

      btMatrix3x3 m_invInertiaTensorWorld;
      btVector3         m_linearVelocity;
      btVector3         m_angularVelocity;
      btScalar          m_inverseMass;
      btScalar          m_angularFactor;

      btVector3         m_gravity;  
      btVector3         m_invInertiaLocal;
      btVector3         m_totalForce;
      btVector3         m_totalTorque;
      
      btScalar          m_linearDamping;
      btScalar          m_angularDamping;
      

      //m_optionalMotionState allows to automatic synchronize the world transform for active objects
      btMotionState*    m_optionalMotionState;

      //keep track of typed constraints referencing this rigid body
      btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;

public:

#ifdef OBSOLETE_MOTIONSTATE_LESS
      //not supported, please use btMotionState
      btRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));
#endif //OBSOLETE_MOTIONSTATE_LESS

      btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0),btScalar linearDamping=btScalar(0.),btScalar angularDamping=btScalar(0.),btScalar friction=btScalar(0.5),btScalar restitution=btScalar(0.));

      void              proceedToTransform(const btTransform& newTrans); 
      
      ///to keep collision detection and dynamics separate we don't store a rigidbody pointer
      ///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
00077       static const btRigidBody*     upcast(const btCollisionObject* colObj)
      {
            return (const btRigidBody*)colObj->getInternalOwner();
      }
      static btRigidBody*     upcast(btCollisionObject* colObj)
      {
            return (btRigidBody*)colObj->getInternalOwner();
      }
      
      /// continuous collision detection needs prediction
      void              predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
      
      void              saveKinematicState(btScalar step);
      

      void              applyForces(btScalar step);
      
      void              setGravity(const btVector3& acceleration);  

      const btVector3&  getGravity() const
      {
            return m_gravity;
      }

      void              setDamping(btScalar lin_damping, btScalar ang_damping);
      
      inline const btCollisionShape*      getCollisionShape() const {
            return m_collisionShape;
      }

      inline btCollisionShape*      getCollisionShape() {
                  return m_collisionShape;
      }
      
      void              setMassProps(btScalar mass, const btVector3& inertia);
      
      btScalar          getInvMass() const { return m_inverseMass; }
      const btMatrix3x3& getInvInertiaTensorWorld() const { 
            return m_invInertiaTensorWorld; 
      }
            
      void              integrateVelocities(btScalar step);

      void              setCenterOfMassTransform(const btTransform& xform);

      void              applyCentralForce(const btVector3& force)
      {
            m_totalForce += force;
      }
    
      const btVector3& getInvInertiaDiagLocal()
      {
            return m_invInertiaLocal;
      };

      void  setInvInertiaDiagLocal(const btVector3& diagInvInertia)
      {
            m_invInertiaLocal = diagInvInertia;
      }

      void  applyTorque(const btVector3& torque)
      {
            m_totalTorque += torque;
      }
      
      void  applyForce(const btVector3& force, const btVector3& rel_pos) 
      {
            applyCentralForce(force);
            applyTorque(rel_pos.cross(force));
      }
      
      void applyCentralImpulse(const btVector3& impulse)
      {
            m_linearVelocity += impulse * m_inverseMass;
      }
      
      void applyTorqueImpulse(const btVector3& torque)
      {
                  m_angularVelocity += m_invInertiaTensorWorld * torque;
      }
      
      void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) 
      {
            if (m_inverseMass != btScalar(0.))
            {
                  applyCentralImpulse(impulse);
                  if (m_angularFactor)
                  {
                        applyTorqueImpulse(rel_pos.cross(impulse)*m_angularFactor);
                  }
            }
      }

      //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
      inline void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
      {
            if (m_inverseMass != btScalar(0.))
            {
                  m_linearVelocity += linearComponent*impulseMagnitude;
                  if (m_angularFactor)
                  {
                        m_angularVelocity += angularComponent*impulseMagnitude*m_angularFactor;
                  }
            }
      }
      
      void clearForces() 
      {
            m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
            m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
      }
      
      void updateInertiaTensor();    
      
      const btPoint3&     getCenterOfMassPosition() const { 
            return m_worldTransform.getOrigin(); 
      }
      btQuaternion getOrientation() const;
      
      const btTransform&  getCenterOfMassTransform() const { 
            return m_worldTransform; 
      }
      const btVector3&   getLinearVelocity() const { 
            return m_linearVelocity; 
      }
      const btVector3&    getAngularVelocity() const { 
            return m_angularVelocity; 
      }
      

      inline void setLinearVelocity(const btVector3& lin_vel)
      { 
            assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
            m_linearVelocity = lin_vel; 
      }

      inline void setAngularVelocity(const btVector3& ang_vel) { 
            assert (m_collisionFlags != btCollisionObject::CF_STATIC_OBJECT);
            {
                  m_angularVelocity = ang_vel; 
            }
      }

      btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
      {
            //we also calculate lin/ang velocity for kinematic objects
            return m_linearVelocity + m_angularVelocity.cross(rel_pos);

            //for kinematic objects, we could also use use:
            //          return      (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
      }

      void translate(const btVector3& v) 
      {
            m_worldTransform.getOrigin() += v; 
      }

      
      void  getAabb(btVector3& aabbMin,btVector3& aabbMax) const;




      
      inline btScalar computeImpulseDenominator(const btPoint3& pos, const btVector3& normal) const
      {
            btVector3 r0 = pos - getCenterOfMassPosition();

            btVector3 c0 = (r0).cross(normal);

            btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);

            return m_inverseMass + normal.dot(vec);

      }

      inline btScalar computeAngularImpulseDenominator(const btVector3& axis) const
      {
            btVector3 vec = axis * getInvInertiaTensorWorld();
            return axis.dot(vec);
      }

      inline void updateDeactivation(btScalar timeStep)
      {
            if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
                  return;

            if ((getLinearVelocity().length2() < gLinearSleepingThreshold*gLinearSleepingThreshold) &&
                  (getAngularVelocity().length2() < gAngularSleepingThreshold*gAngularSleepingThreshold))
            {
                  m_deactivationTime += timeStep;
            } else
            {
                  m_deactivationTime=btScalar(0.);
                  setActivationState(0);
            }

      }

      inline bool wantsSleeping()
      {

            if (getActivationState() == DISABLE_DEACTIVATION)
                  return false;

            //disable deactivation
            if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
                  return false;

            if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
                  return true;

            if (m_deactivationTime> gDeactivationTime)
            {
                  return true;
            }
            return false;
      }


      
      const btBroadphaseProxy*      getBroadphaseProxy() const
      {
            return m_broadphaseHandle;
      }
      btBroadphaseProxy*      getBroadphaseProxy() 
      {
            return m_broadphaseHandle;
      }
      void  setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
      {
            m_broadphaseHandle = broadphaseProxy;
      }

      //btMotionState allows to automatic synchronize the world transform for active objects
      btMotionState*    getMotionState()
      {
            return m_optionalMotionState;
      }
      const btMotionState*    getMotionState() const
      {
            return m_optionalMotionState;
      }
      void  setMotionState(btMotionState* motionState)
      {
            m_optionalMotionState = motionState;
            if (m_optionalMotionState)
                  motionState->getWorldTransform(m_worldTransform);
      }

      //for experimental overriding of friction/contact solver func
      int   m_contactSolverType;
      int   m_frictionSolverType;

      void  setAngularFactor(btScalar angFac)
      {
            m_angularFactor = angFac;
      }
      btScalar    getAngularFactor() const
      {
            return m_angularFactor;
      }

      //is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
      bool  isInWorld() const
      {
            return (getBroadphaseProxy() != 0);
      }

      virtual bool checkCollideWithOverride(btCollisionObject* co);

      void addConstraintRef(btTypedConstraint* c);
      void removeConstraintRef(btTypedConstraint* c);

      int   m_debugBodyId;
};



#endif


Generated by  Doxygen 1.6.0   Back to index