Logo Search packages:      
Sourcecode: blender version File versions

btContactConstraint.cpp

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btContactConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btVector3.h"
#include "btJacobianEntry.h"
#include "btContactSolverInfo.h"
#include "LinearMath/btMinMax.h"
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"

#define ASSERT2 assert

#define USE_INTERNAL_APPLY_IMPULSE 1


//bilateral constraint between two dynamic objects
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
                      btRigidBody& body2, const btVector3& pos2,
                      btScalar distance, const btVector3& normal,btScalar& impulse ,float timeStep)
{
      float normalLenSqr = normal.length2();
      ASSERT2(fabs(normalLenSqr) < 1.1f);
      if (normalLenSqr > 1.1f)
      {
            impulse = 0.f;
            return;
      }
      btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
      btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
      //this jacobian entry could be re-used for all iterations
      
      btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
      btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
      btVector3 vel = vel1 - vel2;
      

        btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
            body2.getCenterOfMassTransform().getBasis().transpose(),
            rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(),
            body2.getInvInertiaDiagLocal(),body2.getInvMass());

      btScalar jacDiagAB = jac.getDiagonal();
      btScalar jacDiagABInv = 1.f / jacDiagAB;
      
        btScalar rel_vel = jac.getRelativeVelocity(
            body1.getLinearVelocity(),
            body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(),
            body2.getLinearVelocity(),
            body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); 
      float a;
      a=jacDiagABInv;


      rel_vel = normal.dot(vel);
      
      //todo: move this into proper structure
      btScalar contactDamping = 0.2f;

#ifdef ONLY_USE_LINEAR_MASS
      btScalar massTerm = 1.f / (body1.getInvMass() + body2.getInvMass());
      impulse = - contactDamping * rel_vel * massTerm;
#else 
      btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
      impulse = velocityImpulse;
#endif
}



//response  between two dynamic objects with friction
float resolveSingleCollision(
      btRigidBody& body1,
      btRigidBody& body2,
      btManifoldPoint& contactPoint,
      const btContactSolverInfo& solverInfo)
{

      const btVector3& pos1 = contactPoint.getPositionWorldOnA();
      const btVector3& pos2 = contactPoint.getPositionWorldOnB();
      const btVector3& normal = contactPoint.m_normalWorldOnB;

      btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
      btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
      
      btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
      btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
      btVector3 vel = vel1 - vel2;
      btScalar rel_vel;
      rel_vel = normal.dot(vel);
      
      btScalar Kfps = 1.f / solverInfo.m_timeStep ;

      // float damping = solverInfo.m_damping ;
      float Kerp = solverInfo.m_erp;
      float Kcor = Kerp *Kfps;

      btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
      assert(cpd);
      btScalar distance = cpd->m_penetration;
      btScalar positionalError = Kcor *-distance;
      btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;

      btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;

      btScalar    velocityImpulse = velocityError * cpd->m_jacDiagABInv;

      btScalar normalImpulse = penetrationImpulse+velocityImpulse;
      
      // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse
      float oldNormalImpulse = cpd->m_appliedImpulse;
      float sum = oldNormalImpulse + normalImpulse;
      cpd->m_appliedImpulse = 0.f > sum ? 0.f: sum;

      normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;

#ifdef USE_INTERNAL_APPLY_IMPULSE
      if (body1.getInvMass())
      {
            body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
      }
      if (body2.getInvMass())
      {
            body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
      }
#else //USE_INTERNAL_APPLY_IMPULSE
      body1.applyImpulse(normal*(normalImpulse), rel_pos1);
      body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE

      return normalImpulse;
}


float resolveSingleFriction(
      btRigidBody& body1,
      btRigidBody& body2,
      btManifoldPoint& contactPoint,
      const btContactSolverInfo& solverInfo)
{

      const btVector3& pos1 = contactPoint.getPositionWorldOnA();
      const btVector3& pos2 = contactPoint.getPositionWorldOnB();

      btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
      btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
      
      btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
      assert(cpd);

      float combinedFriction = cpd->m_friction;
      
      btScalar limit = cpd->m_appliedImpulse * combinedFriction;
      
      if (cpd->m_appliedImpulse>0.f)
      //friction
      {
            //apply friction in the 2 tangential directions
            
            // 1st tangent
            btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
            btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
            btVector3 vel = vel1 - vel2;
      
            btScalar j1,j2;

            {
                        
                  btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel);

                  // calculate j that moves us to zero relative velocity
                  j1 = -vrel * cpd->m_jacDiagABInvTangent0;
                  float oldTangentImpulse = cpd->m_accumulatedTangentImpulse0;
                  cpd->m_accumulatedTangentImpulse0 = oldTangentImpulse + j1;
                  GEN_set_min(cpd->m_accumulatedTangentImpulse0, limit);
                  GEN_set_max(cpd->m_accumulatedTangentImpulse0, -limit);
                  j1 = cpd->m_accumulatedTangentImpulse0 - oldTangentImpulse;

            }
            {
                  // 2nd tangent

                  btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel);
                  
                  // calculate j that moves us to zero relative velocity
                  j2 = -vrel * cpd->m_jacDiagABInvTangent1;
                  float oldTangentImpulse = cpd->m_accumulatedTangentImpulse1;
                  cpd->m_accumulatedTangentImpulse1 = oldTangentImpulse + j2;
                  GEN_set_min(cpd->m_accumulatedTangentImpulse1, limit);
                  GEN_set_max(cpd->m_accumulatedTangentImpulse1, -limit);
                  j2 = cpd->m_accumulatedTangentImpulse1 - oldTangentImpulse;
            }

#ifdef USE_INTERNAL_APPLY_IMPULSE
      if (body1.getInvMass())
      {
            body1.internalApplyImpulse(cpd->m_frictionWorldTangential0*body1.getInvMass(),cpd->m_frictionAngularComponent0A,j1);
            body1.internalApplyImpulse(cpd->m_frictionWorldTangential1*body1.getInvMass(),cpd->m_frictionAngularComponent1A,j2);
      }
      if (body2.getInvMass())
      {
            body2.internalApplyImpulse(cpd->m_frictionWorldTangential0*body2.getInvMass(),cpd->m_frictionAngularComponent0B,-j1);
            body2.internalApplyImpulse(cpd->m_frictionWorldTangential1*body2.getInvMass(),cpd->m_frictionAngularComponent1B,-j2);   
      }
#else //USE_INTERNAL_APPLY_IMPULSE
      body1.applyImpulse((j1 * cpd->m_frictionWorldTangential0)+(j2 * cpd->m_frictionWorldTangential1), rel_pos1);
      body2.applyImpulse((j1 * -cpd->m_frictionWorldTangential0)+(j2 * -cpd->m_frictionWorldTangential1), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE


      } 
      return cpd->m_appliedImpulse;
}


float resolveSingleFrictionOriginal(
      btRigidBody& body1,
      btRigidBody& body2,
      btManifoldPoint& contactPoint,
      const btContactSolverInfo& solverInfo)
{

      const btVector3& pos1 = contactPoint.getPositionWorldOnA();
      const btVector3& pos2 = contactPoint.getPositionWorldOnB();

      btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
      btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
      
      btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
      assert(cpd);

      float combinedFriction = cpd->m_friction;
      
      btScalar limit = cpd->m_appliedImpulse * combinedFriction;
      //if (contactPoint.m_appliedImpulse>0.f)
      //friction
      {
            //apply friction in the 2 tangential directions
            
            {
                  // 1st tangent
                  btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
                  btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
                  btVector3 vel = vel1 - vel2;
                  
                  btScalar vrel = cpd->m_frictionWorldTangential0.dot(vel);

                  // calculate j that moves us to zero relative velocity
                  btScalar j = -vrel * cpd->m_jacDiagABInvTangent0;
                  float total = cpd->m_accumulatedTangentImpulse0 + j;
                  GEN_set_min(total, limit);
                  GEN_set_max(total, -limit);
                  j = total - cpd->m_accumulatedTangentImpulse0;
                  cpd->m_accumulatedTangentImpulse0 = total;
                  body1.applyImpulse(j * cpd->m_frictionWorldTangential0, rel_pos1);
                  body2.applyImpulse(j * -cpd->m_frictionWorldTangential0, rel_pos2);
            }

                        
            {
                  // 2nd tangent
                  btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
                  btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
                  btVector3 vel = vel1 - vel2;

                  btScalar vrel = cpd->m_frictionWorldTangential1.dot(vel);
                  
                  // calculate j that moves us to zero relative velocity
                  btScalar j = -vrel * cpd->m_jacDiagABInvTangent1;
                  float total = cpd->m_accumulatedTangentImpulse1 + j;
                  GEN_set_min(total, limit);
                  GEN_set_max(total, -limit);
                  j = total - cpd->m_accumulatedTangentImpulse1;
                  cpd->m_accumulatedTangentImpulse1 = total;
                  body1.applyImpulse(j * cpd->m_frictionWorldTangential1, rel_pos1);
                  body2.applyImpulse(j * -cpd->m_frictionWorldTangential1, rel_pos2);
            }
      } 
      return cpd->m_appliedImpulse;
}


//velocity + friction
//response  between two dynamic objects with friction
float resolveSingleCollisionCombined(
      btRigidBody& body1,
      btRigidBody& body2,
      btManifoldPoint& contactPoint,
      const btContactSolverInfo& solverInfo)
{

      const btVector3& pos1 = contactPoint.getPositionWorldOnA();
      const btVector3& pos2 = contactPoint.getPositionWorldOnB();
      const btVector3& normal = contactPoint.m_normalWorldOnB;

      btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
      btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
      
      btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
      btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
      btVector3 vel = vel1 - vel2;
      btScalar rel_vel;
      rel_vel = normal.dot(vel);
      
      btScalar Kfps = 1.f / solverInfo.m_timeStep ;

      //float damping = solverInfo.m_damping ;
      float Kerp = solverInfo.m_erp;
      float Kcor = Kerp *Kfps;

      btConstraintPersistentData* cpd = (btConstraintPersistentData*) contactPoint.m_userPersistentData;
      assert(cpd);
      btScalar distance = cpd->m_penetration;
      btScalar positionalError = Kcor *-distance;
      btScalar velocityError = cpd->m_restitution - rel_vel;// * damping;

      btScalar penetrationImpulse = positionalError * cpd->m_jacDiagABInv;

      btScalar    velocityImpulse = velocityError * cpd->m_jacDiagABInv;

      btScalar normalImpulse = penetrationImpulse+velocityImpulse;
      
      // See Erin Catto's GDC 2006 paper: Clamp the accumulated impulse
      float oldNormalImpulse = cpd->m_appliedImpulse;
      float sum = oldNormalImpulse + normalImpulse;
      cpd->m_appliedImpulse = 0.f > sum ? 0.f: sum;

      normalImpulse = cpd->m_appliedImpulse - oldNormalImpulse;


#ifdef USE_INTERNAL_APPLY_IMPULSE
      if (body1.getInvMass())
      {
            body1.internalApplyImpulse(contactPoint.m_normalWorldOnB*body1.getInvMass(),cpd->m_angularComponentA,normalImpulse);
      }
      if (body2.getInvMass())
      {
            body2.internalApplyImpulse(contactPoint.m_normalWorldOnB*body2.getInvMass(),cpd->m_angularComponentB,-normalImpulse);
      }
#else //USE_INTERNAL_APPLY_IMPULSE
      body1.applyImpulse(normal*(normalImpulse), rel_pos1);
      body2.applyImpulse(-normal*(normalImpulse), rel_pos2);
#endif //USE_INTERNAL_APPLY_IMPULSE

      {
            //friction
            btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
            btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
            btVector3 vel = vel1 - vel2;
        
            rel_vel = normal.dot(vel);


            btVector3 lat_vel = vel - normal * rel_vel;
            btScalar lat_rel_vel = lat_vel.length();

            float combinedFriction = cpd->m_friction;

            if (cpd->m_appliedImpulse > 0)
            if (lat_rel_vel > SIMD_EPSILON)
            {
                  lat_vel /= lat_rel_vel;
                  btVector3 temp1 = body1.getInvInertiaTensorWorld() * rel_pos1.cross(lat_vel);
                  btVector3 temp2 = body2.getInvInertiaTensorWorld() * rel_pos2.cross(lat_vel);
                  btScalar friction_impulse = lat_rel_vel /
                        (body1.getInvMass() + body2.getInvMass() + lat_vel.dot(temp1.cross(rel_pos1) + temp2.cross(rel_pos2)));
                  btScalar normal_impulse = cpd->m_appliedImpulse * combinedFriction;

                  GEN_set_min(friction_impulse, normal_impulse);
                  GEN_set_max(friction_impulse, -normal_impulse);
                  body1.applyImpulse(lat_vel * -friction_impulse, rel_pos1);
                  body2.applyImpulse(lat_vel * friction_impulse, rel_pos2);
            }
      }



      return normalImpulse;
}
float resolveSingleFrictionEmpty(
      btRigidBody& body1,
      btRigidBody& body2,
      btManifoldPoint& contactPoint,
      const btContactSolverInfo& solverInfo)
{
      return 0.f;
};


Generated by  Doxygen 1.6.0   Back to index