Logo Search packages:      
Sourcecode: blender version File versions  Download package

mmgr.cpp

// ---------------------------------------------------------------------------------------------------------------------------------
//                                                      
//                                                      
//  _ __ ___  _ __ ___   __ _ _ __      ___ _ __  _ __  
// | '_ ` _ \| '_ ` _ \ / _` | '__|    / __| '_ \| '_ \ 
// | | | | | | | | | | | (_| | |    _ | (__| |_) | |_) |
// |_| |_| |_|_| |_| |_|\__, |_|   (_) \___| .__/| .__/ 
//                       __/ |             | |   | |    
//                      |___/              |_|   |_|    
//
// Memory manager & tracking software
//
// Best viewed with 8-character tabs and (at least) 132 columns
//
// ---------------------------------------------------------------------------------------------------------------------------------
//
// Restrictions & freedoms pertaining to usage and redistribution of this software:
//
//  * This software is 100% free
//  * If you use this software (in part or in whole) you must credit the author.
//  * This software may not be re-distributed (in part or in whole) in a modified
//    form without clear documentation on how to obtain a copy of the original work.
//  * You may not use this software to directly or indirectly cause harm to others.
//  * This software is provided as-is and without warrantee. Use at your own risk.
//
// For more information, visit HTTP://www.FluidStudios.com
//
// ---------------------------------------------------------------------------------------------------------------------------------
// Originally created on 12/22/2000 by Paul Nettle
//
// Copyright 2000, Fluid Studios, Inc., all rights reserved.
// ---------------------------------------------------------------------------------------------------------------------------------
//
// !!IMPORTANT!!
//
// This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
// "-DOC-" to locate pertinent information about how to use this software.
//
// You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
// tracking software works, so you can better utilize it within your applications.
//
// NOTES:
//
// 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
//    do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
//    under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
//
// 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
//    order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
//    Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
//
// 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
//    code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
//    example is the use of the class MemStaticTimeTracker.)
//
// 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
//
// 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
//    you're including standard includes from within your own project inclues; that will break this very specific dependency order. 
//    It should look like this:
//
//          #include <stdio.h>   // Standard includes MUST come first
//          #include <stdlib.h>  //
//          #include <streamio>  //
//
//          #include "mmgr.h"    // mmgr.h MUST come next
//
//          #include "myfile1.h" // Project includes MUST come last
//          #include "myfile2.h" //
//          #include "myfile3.h" //
//
// ---------------------------------------------------------------------------------------------------------------------------------

//#include "stdafx.h"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <new>

#ifndef     WIN32
#include <unistd.h>
#endif

#include "mmgr.h"

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
// very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
// software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
// software!
//
// Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
// this end, you are given some very simple debugging tools.
// 
// The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
// occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
// reading...
//
// If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
// enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
// into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
// report the name of the routine.
//
// Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
// the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
// by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
// allocation routines.
//
// In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
// crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
// in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
// bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
// STRESS_TEST macro (below.)
//
// If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
// midnight@FluidStudios.com. Before you do, however, check for a newer version at:
//
//    http://www.FluidStudios.com/publications.html
//
// When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
// cluttered and hard to read.
// ---------------------------------------------------------------------------------------------------------------------------------

//#define   TEST_MEMORY_MANAGER

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
// ---------------------------------------------------------------------------------------------------------------------------------

#define     STRESS_TEST

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
//       want to test with (0 = none, >100 = all failures).
// ---------------------------------------------------------------------------------------------------------------------------------

//#define   RANDOM_FAILURE 10.0

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Locals -- modify these flags to suit your needs
// ---------------------------------------------------------------------------------------------------------------------------------

#ifdef      STRESS_TEST
      static      const unsigned int      hashBits                      = 12;
      static                  bool              randomWipe              = true;
      static                  bool              alwaysValidateAll       = true;
      static                  bool              alwaysLogAll            = true;
      static                  bool              alwaysWipeAll           = true;
      static                  bool              cleanupLogOnFirstRun    = true;
      static      const unsigned int      paddingSize             = 1024; // An extra 8K per allocation!
#else
      static      const unsigned int      hashBits               = 12;
      static                  bool              randomWipe             = false;
      static                  bool              alwaysValidateAll      = false;
      static                  bool              alwaysLogAll           = false;
      static                  bool              alwaysWipeAll          = true;
      static                  bool              cleanupLogOnFirstRun   = true;
      static      const unsigned int      paddingSize            = 4;
#endif

// ---------------------------------------------------------------------------------------------------------------------------------
// We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
// simply declares a forced breakpoint.
//
// The BEOS assert added by Arvid Norberg <arvid@iname.com>.
// ---------------------------------------------------------------------------------------------------------------------------------

#ifdef      WIN32
      #ifdef      _DEBUG
      #define     m_assert(x) if ((x) == false) __asm { int 3 }
      #else
      #define     m_assert(x) {}
      #endif
#elif defined(__BEOS__)
      #ifdef DEBUG
            extern void debugger(const char *message);
            #define     m_assert(x) if ((x) == false) debugger("mmgr: assert failed")
      #else
            #define m_assert(x) {}
      #endif
#else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
      #define     m_assert(cond) assert(cond)
#endif

// ---------------------------------------------------------------------------------------------------------------------------------
// Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.)
// appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them.
// ---------------------------------------------------------------------------------------------------------------------------------

#undef      new
#undef      delete
#undef      malloc
#undef      calloc
#undef      realloc
#undef      free

// ---------------------------------------------------------------------------------------------------------------------------------
// Defaults for the constants & statics in the MemoryManager class
// ---------------------------------------------------------------------------------------------------------------------------------

const       unsigned int      m_alloc_unknown        = 0;
const       unsigned int      m_alloc_new            = 1;
const       unsigned int      m_alloc_new_array      = 2;
const       unsigned int      m_alloc_malloc         = 3;
const       unsigned int      m_alloc_calloc         = 4;
const       unsigned int      m_alloc_realloc        = 5;
const       unsigned int      m_alloc_delete         = 6;
const       unsigned int      m_alloc_delete_array   = 7;
const       unsigned int      m_alloc_free           = 8;

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
// ---------------------------------------------------------------------------------------------------------------------------------

static            unsigned int      prefixPattern          = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
static            unsigned int      postfixPattern         = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
static            unsigned int      unusedPattern          = 0xfeedface; // Fill pattern for freshly allocated blocks
static            unsigned int      releasedPattern        = 0xdeadbeef; // Fill pattern for deallocated blocks

// ---------------------------------------------------------------------------------------------------------------------------------
// Other locals
// ---------------------------------------------------------------------------------------------------------------------------------

static      const unsigned int      hashSize               = 1 << hashBits;
static      const char        *allocationTypes[]     = {"Unknown",
                                            "new",     "new[]",  "malloc",   "calloc",
                                            "realloc", "delete", "delete[]", "free"};
static            sAllocUnit  *hashTable[hashSize];
static            sAllocUnit  *reservoir;
static            unsigned int      currentAllocationCount = 0;
static            unsigned int      breakOnAllocationCount = 0;
static            sMStats           stats;
static      const char        *sourceFile            = "??";
static      const char        *sourceFunc            = "??";
static            unsigned int      sourceLine             = 0;
static            bool        staticDeinitTime       = false;
static            sAllocUnit  **reservoirBuffer      = NULL;
static            unsigned int      reservoirBufferSize    = 0;
static const      char        *memoryLogFile         = "memory.log";
static const      char        *memoryLeakLogFile     = "memleaks.log";
static            void        doCleanupLogOnFirstRun();

// ---------------------------------------------------------------------------------------------------------------------------------
// Local functions only
// ---------------------------------------------------------------------------------------------------------------------------------

static      void  log(const char *format, ...)
{
      // Build the buffer

      static char buffer[2048];
      va_list     ap;
      va_start(ap, format);
      vsprintf(buffer, format, ap);
      va_end(ap);

      // Cleanup the log?

      if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();

      // Open the log file

      FILE  *fp = fopen(memoryLogFile, "ab");

      // If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
      // reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
      m_assert(fp);

      if (!fp) return;

      // Spit out the data to the log

      fprintf(fp, "%s\r\n", buffer);
      fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  doCleanupLogOnFirstRun()
{
      if (cleanupLogOnFirstRun)
      {
            unlink(memoryLogFile);
            cleanupLogOnFirstRun = false;

            // Print a header for the log

            time_t      t = time(NULL);
            log("--------------------------------------------------------------------------------");
            log("");
            log("      %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t)));
            log("--------------------------------------------------------------------------------");
            log("");
            log("This file contains a log of all memory operations performed during the last run.");
            log("");
            log("Interrogate this file to track errors or to help track down memory-related");
            log("issues. You can do this by tracing the allocations performed by a specific owner");
            log("or by tracking a specific address through a series of allocations and");
            log("reallocations.");
            log("");
            log("There is a lot of useful information here which, when used creatively, can be");
            log("extremely helpful.");
            log("");
            log("Note that the following guides are used throughout this file:");
            log("");
            log("   [!] - Error");
            log("   [+] - Allocation");
            log("   [~] - Reallocation");
            log("   [-] - Deallocation");
            log("   [I] - Generic information");
            log("   [F] - Failure induced for the purpose of stress-testing your application");
            log("   [D] - Information used for debugging this memory manager");
            log("");
            log("...so, to find all errors in the file, search for \"[!]\"");
            log("");
            log("--------------------------------------------------------------------------------");
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      const char  *sourceFileStripper(const char *sourceFile)
{
      char  *ptr = strrchr(sourceFile, '\\');
      if (ptr) return ptr + 1;
      ptr = strrchr(sourceFile, '/');
      if (ptr) return ptr + 1;
      return sourceFile;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      const char  *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc)
{
      static      char  str[90];
      memset(str, 0, sizeof(str));
      sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc);
      return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      const char  *insertCommas(unsigned int value)
{
      static      char  str[30];
      memset(str, 0, sizeof(str));

      sprintf(str, "%u", value);
      if (strlen(str) > 3)
      {
            memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
            str[strlen(str) - 4] = ',';
      }
      if (strlen(str) > 7)
      {
            memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
            str[strlen(str) - 8] = ',';
      }
      if (strlen(str) > 11)
      {
            memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
            str[strlen(str) - 12] = ',';
      }

      return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      const char  *memorySizeString(unsigned long size)
{
      static      char  str[90];
           if (size > (1024*1024))  sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f));
      else if (size > 1024)         sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f);
      else                    sprintf(str, "%10s bytes     ", insertCommas(size));
      return str;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      sAllocUnit  *findAllocUnit(const void *reportedAddress)
{
      // Just in case...
      m_assert(reportedAddress != NULL);

      // Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
      // addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
      // very good coverage.

      unsigned int      hashIndex = ((unsigned int) reportedAddress >> 4) & (hashSize - 1);
      sAllocUnit  *ptr = hashTable[hashIndex];
      while(ptr)
      {
            if (ptr->reportedAddress == reportedAddress) return ptr;
            ptr = ptr->next;
      }

      return NULL;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      size_t      calculateActualSize(const size_t reportedSize)
{
      // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
      // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
      // 8 bytes, which means an int can actually be larger than a long.)

      return reportedSize + paddingSize * sizeof(long) * 2;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      size_t      calculateReportedSize(const size_t actualSize)
{
      // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
      // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
      // 8 bytes, which means an int can actually be larger than a long.)

      return actualSize - paddingSize * sizeof(long) * 2;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  *calculateReportedAddress(const void *actualAddress)
{
      // We allow this...

      if (!actualAddress) return NULL;

      // JUst account for the padding

      return (void *) ((char *) actualAddress + sizeof(long) * paddingSize);
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0)
{
      // For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
      // crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
      // you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
      // can be tracked down easier.

      if (randomWipe)
      {
            pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
      }

      // -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
      // product. So uncomment the following line for releases.
      //
      // Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
      // leave it this way (as an option) because this does slow things down.
//    pattern = 0;

      // This part of the operation is optional

      if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
      {
            // Fill the bulk

            long  *lptr = (long *) ((char *)allocUnit->reportedAddress + originalReportedSize);
            int   length = allocUnit->reportedSize - originalReportedSize;
            int   i;
            for (i = 0; i < (length >> 2); i++, lptr++)
            {
                  *lptr = pattern;
            }

            // Fill the remainder

            unsigned int      shiftCount = 0;
            char        *cptr = (char *) lptr;
            for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
            {
                  *cptr = (pattern & (0xff << shiftCount)) >> shiftCount;
            }
      }

      // Write in the prefix/postfix bytes

      long        *pre = (long *) allocUnit->actualAddress;
      long        *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
      for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
      {
            *pre = prefixPattern;
            *post = postfixPattern;
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  dumpAllocations(FILE *fp)
{
      fprintf(fp, "Alloc.   Addr       Size       Addr       Size                        BreakOn BreakOn              \r\n");
      fprintf(fp, "Number Reported   Reported    Actual     Actual     Unused    Method  Dealloc Realloc Allocated by \r\n");
      fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n");


      for (unsigned int i = 0; i < hashSize; i++)
      {
            sAllocUnit *ptr = hashTable[i];
            while(ptr)
            {
                  fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s    %c       %c    %s\r\n",
                        ptr->allocationNumber,
                        (unsigned int) ptr->reportedAddress, ptr->reportedSize,
                        (unsigned int) ptr->actualAddress, ptr->actualSize,
                        m_calcUnused(ptr),
                        allocationTypes[ptr->allocationType],
                        ptr->breakOnDealloc ? 'Y':'N',
                        ptr->breakOnRealloc ? 'Y':'N',
                        ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc));
                  ptr = ptr->next;
            }
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  dumpLeakReport()
{
      // Open the report file

      FILE  *fp = fopen(memoryLeakLogFile, "w+b");

      // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
      // some reason.)
      m_assert(fp);
      if (!fp) return;

      // Any leaks?

      // Header

      static  char    timeString[25];
      memset(timeString, 0, sizeof(timeString));
      time_t  t = time(NULL);
      struct  tm *tme = localtime(&t);
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "|                                          Memory leak report for:  %02d/%02d/%04d %02d:%02d:%02d                                            |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "\r\n");
      fprintf(fp, "\r\n");
      if (stats.totalAllocUnitCount)
      {
            fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
      }
      else
      {
            fprintf(fp, "Congratulations! No memory leaks found!\r\n");

            // We can finally free up our own memory allocations

            if (reservoirBuffer)
            {
                  for (unsigned int i = 0; i < reservoirBufferSize; i++)
                  {
                        free(reservoirBuffer[i]);
                  }
                  free(reservoirBuffer);
                  reservoirBuffer = 0;
                  reservoirBufferSize = 0;
                  reservoir = NULL;
            }
      }
      fprintf(fp, "\r\n");

      if (stats.totalAllocUnitCount)
      {
            dumpAllocations(fp);
      }

      fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------
// We use a static class to let us know when we're in the midst of static deinitialization
// ---------------------------------------------------------------------------------------------------------------------------------

class MemStaticTimeTracker
{
public:
      MemStaticTimeTracker() {doCleanupLogOnFirstRun();}
      ~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();}
};
static      MemStaticTimeTracker    mstt;

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Flags & options -- Call these routines to enable/disable the following options
// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_alwaysValidateAll()
{
      // Force a validation of all allocation units each time we enter this software
      return alwaysValidateAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_alwaysLogAll()
{
      // Force a log of every allocation & deallocation into memory.log
      return alwaysLogAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_alwaysWipeAll()
{
      // Force this software to always wipe memory with a pattern when it is being allocated/dallocated
      return alwaysWipeAll;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_randomeWipe()
{
      // Force this software to use a random pattern when wiping memory -- good for stress testing
      return randomWipe;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// reallocated.
// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_breakOnRealloc(void *reportedAddress)
{
      // Locate the existing allocation unit

      sAllocUnit  *au = findAllocUnit(reportedAddress);

      // If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
      // stack frame or the variable 'au' to see which allocation this is.
      m_assert(au != NULL);

      // If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
      // is compatible with reallocation.
      m_assert(au->allocationType == m_alloc_malloc ||
             au->allocationType == m_alloc_calloc ||
             au->allocationType == m_alloc_realloc);

      return au->breakOnRealloc;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// deallocated.
// ---------------------------------------------------------------------------------------------------------------------------------

bool  &m_breakOnDealloc(void *reportedAddress)
{
      // Locate the existing allocation unit

      sAllocUnit  *au = findAllocUnit(reportedAddress);

      // If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
      // stack frame or the variable 'au' to see which allocation this is.
      m_assert(au != NULL);

      return au->breakOnDealloc;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
// ---------------------------------------------------------------------------------------------------------------------------------

void  m_breakOnAllocation(unsigned int count)
{
      breakOnAllocationCount = count;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Used by the macros
// ---------------------------------------------------------------------------------------------------------------------------------

void  m_setOwner(const char *file, const unsigned int line, const char *func)
{
      // You're probably wondering about this...
      //
      // It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with
      // no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This
      // is fine... usually. Here's what actually happens when you use this macro to delete an object:
      //
      // m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete
      //
      // Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete.
      // But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another
      // object? Here's a diagram (indentation follows stack depth):
      //
      // m_setOwner(...) -> ~obj1()                          // original call to delete obj1
      //     m_setOwner(...) -> ~obj2()                      // obj1's destructor deletes obj2
      //         m_setOwner(...) -> ~obj3()                  // obj2's destructor deletes obj3
      //             ...                                     // obj3's destructor just does some stuff
      //         delete                                      // back in obj2's destructor, we call delete
      //     delete                                          // back in obj1's destructor, we call delete
      // delete                                              // back to our original call, we call delete
      //
      // Because m_setOwner() just sets up some static variables (below) it's important that each call to m_setOwner() and
      // successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession
      // followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that
      // only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain
      // will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us.
      //
      // "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third-
      // party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases,
      // m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the
      // destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused.
      //
      // I've been unable to find a solution to this problem, but at least we can detect it and report the data before we
      // lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the
      // information is present...
      //
      // There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL.
      // In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that
      // there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this
      // we report a "Possible destructor chain".
      //
      // Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out.

      if (sourceLine && alwaysLogAll)
      {
            log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc));
      }

      // Okay... save this stuff off so we can keep track of the caller

      sourceFile = file;
      sourceLine = line;
      sourceFunc = func;
}

// ---------------------------------------------------------------------------------------------------------------------------------

static      void  resetGlobals()
{
      sourceFile = "??";
      sourceLine = 0;
      sourceFunc = "??";
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Global new/new[]
//
// These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
// memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void  *operator new(size_t reportedSize)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: new");
      #endif

      // Save these off...

      const char        *file = sourceFile;
      const unsigned int      line = sourceLine;
      const char        *func = sourceFunc;

      // ANSI says: allocation requests of 0 bytes will still return a valid value

      if (reportedSize == 0) reportedSize = 1;

      // ANSI says: loop continuously because the error handler could possibly free up some memory

      for(;;)
      {
            // Try the allocation

            void  *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize);
            if (ptr)
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new");
                  #endif
                  return ptr;
            }

            // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
            // set it back again.
            
            std::new_handler  nh = std::set_new_handler(0);
            std::set_new_handler(nh);

            // If there is an error handler, call it

            if (nh)
            {
                  (*nh)();
            }

            // Otherwise, throw the exception

            else
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new");
                  #endif
                  throw std::bad_alloc();
            }
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------

void  *operator new[](size_t reportedSize)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: new[]");
      #endif

      // Save these off...

      const char        *file = sourceFile;
      const unsigned int      line = sourceLine;
      const char        *func = sourceFunc;

      // The ANSI standard says that allocation requests of 0 bytes will still return a valid value

      if (reportedSize == 0) reportedSize = 1;

      // ANSI says: loop continuously because the error handler could possibly free up some memory

      for(;;)
      {
            // Try the allocation

            void  *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize);
            if (ptr)
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new[]");
                  #endif
                  return ptr;
            }

            // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
            // set it back again.

            std::new_handler  nh = std::set_new_handler(0);
            std::set_new_handler(nh);

            // If there is an error handler, call it

            if (nh)
            {
                  (*nh)();
            }

            // Otherwise, throw the exception

            else
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new[]");
                  #endif
                  throw std::bad_alloc();
            }
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Other global new/new[]
//
// These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
// tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
// our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void  *operator new(size_t reportedSize, const char *sourceFile, int sourceLine)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: new");
      #endif

      // The ANSI standard says that allocation requests of 0 bytes will still return a valid value

      if (reportedSize == 0) reportedSize = 1;

      // ANSI says: loop continuously because the error handler could possibly free up some memory

      for(;;)
      {
            // Try the allocation

            void  *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize);
            if (ptr)
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new");
                  #endif
                  return ptr;
            }

            // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
            // set it back again.

            std::new_handler  nh = std::set_new_handler(0);
            std::set_new_handler(nh);

            // If there is an error handler, call it

            if (nh)
            {
                  (*nh)();
            }

            // Otherwise, throw the exception

            else
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new");
                  #endif
                  throw std::bad_alloc();
            }
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------

void  *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: new[]");
      #endif

      // The ANSI standard says that allocation requests of 0 bytes will still return a valid value

      if (reportedSize == 0) reportedSize = 1;

      // ANSI says: loop continuously because the error handler could possibly free up some memory

      for(;;)
      {
            // Try the allocation

            void  *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize);
            if (ptr)
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new[]");
                  #endif
                  return ptr;
            }

            // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
            // set it back again.

            std::new_handler  nh = std::set_new_handler(0);
            std::set_new_handler(nh);

            // If there is an error handler, call it

            if (nh)
            {
                  (*nh)();
            }

            // Otherwise, throw the exception

            else
            {
                  #ifdef TEST_MEMORY_MANAGER
                  log("[D] EXIT : new[]");
                  #endif
                  throw std::bad_alloc();
            }
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Global delete/delete[]
//
// These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
// but use our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------

void  operator delete(void *reportedAddress)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: delete");
      #endif

      // ANSI says: delete & delete[] allow NULL pointers (they do nothing)

      if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress);
      else if (alwaysLogAll) log("[-] ----- %8s of NULL                      by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc));

      // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
      // source (i.e. they didn't include our H file) then we won't think it was the last allocation.

      resetGlobals();

      #ifdef TEST_MEMORY_MANAGER
      log("[D] EXIT : delete");
      #endif
}

// ---------------------------------------------------------------------------------------------------------------------------------

void  operator delete[](void *reportedAddress)
{
      #ifdef TEST_MEMORY_MANAGER
      log("[D] ENTER: delete[]");
      #endif

      // ANSI says: delete & delete[] allow NULL pointers (they do nothing)

      if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress);
      else if (alwaysLogAll)
            log("[-] ----- %8s of NULL                      by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc));

      // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
      // source (i.e. they didn't include our H file) then we won't think it was the last allocation.

      resetGlobals();

      #ifdef TEST_MEMORY_MANAGER
      log("[D] EXIT : delete[]");
      #endif
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Allocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void  *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize)
{
      try
      {
            #ifdef TEST_MEMORY_MANAGER
            log("[D] ENTER: m_allocator()");
            #endif

            // Increase our allocation count

            currentAllocationCount++;

            // Log the request

            if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));

            // If you hit this assert, you requested a breakpoint on a specific allocation count
            m_assert(currentAllocationCount != breakOnAllocationCount);

            // If necessary, grow the reservoir of unused allocation units

            if (!reservoir)
            {
                  // Allocate 256 reservoir elements

                  reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);

                  // If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
                  // allocations
                  m_assert(reservoir != NULL);

                  // Danger Will Robinson!

                  if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";

                  // Build a linked-list of the elements in our reservoir

                  memset(reservoir, 0, sizeof(sAllocUnit) * 256);
                  for (unsigned int i = 0; i < 256 - 1; i++)
                  {
                        reservoir[i].next = &reservoir[i+1];
                  }

                  // Add this address to our reservoirBuffer so we can free it later

                  sAllocUnit  **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
                  m_assert(temp);
                  if (temp)
                  {
                        reservoirBuffer = temp;
                        reservoirBuffer[reservoirBufferSize++] = reservoir;
                  }
            }

            // Logical flow says this should never happen...
            m_assert(reservoir != NULL);

            // Grab a new allocaton unit from the front of the reservoir

            sAllocUnit  *au = reservoir;
            reservoir = au->next;

            // Populate it with some real data

            memset(au, 0, sizeof(sAllocUnit));
            au->actualSize        = calculateActualSize(reportedSize);
            #ifdef RANDOM_FAILURE
            double      a = rand();
            double      b = RAND_MAX / 100.0 * RANDOM_FAILURE;
            if (a > b)
            {
                  au->actualAddress = malloc(au->actualSize);
            }
            else
            {
                  log("[F] Random faiure");
                  au->actualAddress = NULL;
            }
            #else
            au->actualAddress     = malloc(au->actualSize);
            #endif
            au->reportedSize      = reportedSize;
            au->reportedAddress   = calculateReportedAddress(au->actualAddress);
            au->allocationType    = allocationType;
            au->sourceLine        = sourceLine;
            au->allocationNumber  = currentAllocationCount;
            if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
            else        strcpy (au->sourceFile, "??");
            if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
            else        strcpy (au->sourceFunc, "??");

            // We don't want to assert with random failures, because we want the application to deal with them.

            #ifndef RANDOM_FAILURE
            // If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
            // variable 'au' or the stack frame to see what you were trying to do.
            m_assert(au->actualAddress != NULL);
            #endif

            if (au->actualAddress == NULL)
            {
                  throw "Request for allocation failed. Out of memory.";
            }

            // If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
            // software, use the stack frame to locate the source and include our H file.
            m_assert(allocationType != m_alloc_unknown);

            // Insert the new allocation into the hash table

            unsigned int      hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
            if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
            au->next = hashTable[hashIndex];
            au->prev = NULL;
            hashTable[hashIndex] = au;

            // Account for the new allocatin unit in our stats

            stats.totalReportedMemory += au->reportedSize;
            stats.totalActualMemory   += au->actualSize;
            stats.totalAllocUnitCount++;
            if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
            if (stats.totalActualMemory   > stats.peakActualMemory)   stats.peakActualMemory   = stats.totalActualMemory;
            if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
            stats.accumulatedReportedMemory += au->reportedSize;
            stats.accumulatedActualMemory += au->actualSize;
            stats.accumulatedAllocUnitCount++;

            // Prepare the allocation unit for use (wipe it with recognizable garbage)

            wipeWithPattern(au, unusedPattern);

            // calloc() expects the reported memory address range to be filled with 0's

            if (allocationType == m_alloc_calloc)
            {
                  memset(au->reportedAddress, 0, au->reportedSize);
            }

            // Validate every single allocated unit in memory

            if (alwaysValidateAll) m_validateAllAllocUnits();

            // Log the result

            if (alwaysLogAll) log("[+] ---->             addr 0x%08X", (unsigned int) au->reportedAddress);

            // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
            // source (i.e. they didn't include our H file) then we won't think it was the last allocation.

            resetGlobals();

            // Return the (reported) address of the new allocation unit

            #ifdef TEST_MEMORY_MANAGER
            log("[D] EXIT : m_allocator()");
            #endif

            return au->reportedAddress;
      }
      catch(const char *err)
      {
            // Deal with the errors

            log("[!] %s", err);
            resetGlobals();

            #ifdef TEST_MEMORY_MANAGER
            log("[D] EXIT : m_allocator()");
            #endif

            return NULL;
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Reallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void  *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
{
      try
      {
            #ifdef TEST_MEMORY_MANAGER
            log("[D] ENTER: m_reallocator()");
            #endif

            // Calling realloc with a NULL should force same operations as a malloc

            if (!reportedAddress)
            {
                  return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize);
            }

            // Increase our allocation count

            currentAllocationCount++;

            // If you hit this assert, you requested a breakpoint on a specific allocation count
            m_assert(currentAllocationCount != breakOnAllocationCount);

            // Log the request

            if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));

            // Locate the existing allocation unit

            sAllocUnit  *au = findAllocUnit(reportedAddress);

            // If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
            m_assert(au != NULL);
            if (au == NULL) throw "Request to reallocate RAM that was never allocated";

            // If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
            // already know that from a previous assert you should have seen in validateAllocUnit() :)
            m_assert(m_validateAllocUnit(au));

            // If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
            // tracking software, use the stack frame to locate the source and include our H file.
            m_assert(reallocationType != m_alloc_unknown);

            // If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
            // realloc. In other words, you have a allocation/reallocation mismatch.
            m_assert(au->allocationType == m_alloc_malloc ||
                   au->allocationType == m_alloc_calloc ||
                   au->allocationType == m_alloc_realloc);

            // If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
            // set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
            // allocation unit.
            m_assert(au->breakOnRealloc == false);

            // Keep track of the original size

            unsigned int      originalReportedSize = au->reportedSize;

            if (alwaysLogAll) log("[~] ---->             from 0x%08X(%08d)", originalReportedSize, originalReportedSize);

            // Do the reallocation

            void  *oldReportedAddress = reportedAddress;
            size_t      newActualSize = calculateActualSize(reportedSize);
            void  *newActualAddress = NULL;
            #ifdef RANDOM_FAILURE
            double      a = rand();
            double      b = RAND_MAX / 100.0 * RANDOM_FAILURE;
            if (a > b)
            {
                  newActualAddress = realloc(au->actualAddress, newActualSize);
            }
            else
            {
                  log("[F] Random faiure");
            }
            #else
            newActualAddress = realloc(au->actualAddress, newActualSize);
            #endif

            // We don't want to assert with random failures, because we want the application to deal with them.

            #ifndef RANDOM_FAILURE
            // If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
            // variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
            // trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
            m_assert(newActualAddress);
            #endif

            if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";

            // Remove this allocation from our stats (we'll add the new reallocation again later)

            stats.totalReportedMemory -= au->reportedSize;
            stats.totalActualMemory   -= au->actualSize;

            // Update the allocation with the new information

            au->actualSize        = newActualSize;
            au->actualAddress     = newActualAddress;
            au->reportedSize      = calculateReportedSize(newActualSize);
            au->reportedAddress   = calculateReportedAddress(newActualAddress);
            au->allocationType    = reallocationType;
            au->sourceLine        = sourceLine;
            au->allocationNumber  = currentAllocationCount;
            if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
            else        strcpy (au->sourceFile, "??");
            if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
            else        strcpy (au->sourceFunc, "??");

            // The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table

            unsigned int      hashIndex = (unsigned int) -1;
            if (oldReportedAddress != au->reportedAddress)
            {
                  // Remove this allocation unit from the hash table

                  {
                        unsigned int      hashIndex = ((unsigned int) oldReportedAddress >> 4) & (hashSize - 1);
                        if (hashTable[hashIndex] == au)
                        {
                              hashTable[hashIndex] = hashTable[hashIndex]->next;
                        }
                        else
                        {
                              if (au->prev)     au->prev->next = au->next;
                              if (au->next)     au->next->prev = au->prev;
                        }
                  }

                  // Re-insert it back into the hash table

                  hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
                  if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
                  au->next = hashTable[hashIndex];
                  au->prev = NULL;
                  hashTable[hashIndex] = au;
            }

            // Account for the new allocatin unit in our stats

            stats.totalReportedMemory += au->reportedSize;
            stats.totalActualMemory   += au->actualSize;
            if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
            if (stats.totalActualMemory   > stats.peakActualMemory)   stats.peakActualMemory   = stats.totalActualMemory;
            int   deltaReportedSize = reportedSize - originalReportedSize;
            if (deltaReportedSize > 0)
            {
                  stats.accumulatedReportedMemory += deltaReportedSize;
                  stats.accumulatedActualMemory += deltaReportedSize;
            }

            // Prepare the allocation unit for use (wipe it with recognizable garbage)

            wipeWithPattern(au, unusedPattern, originalReportedSize);

            // If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
            // the reallocation. This should not happen.
            m_assert(m_validateAllocUnit(au));

            // Validate every single allocated unit in memory

            if (alwaysValidateAll) m_validateAllAllocUnits();

            // Log the result

            if (alwaysLogAll) log("[~] ---->             addr 0x%08X", (unsigned int) au->reportedAddress);

            // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
            // source (i.e. they didn't include our H file) then we won't think it was the last allocation.

            resetGlobals();

            // Return the (reported) address of the new allocation unit

            #ifdef TEST_MEMORY_MANAGER
            log("[D] EXIT : m_reallocator()");
            #endif

            return au->reportedAddress;
      }
      catch(const char *err)
      {
            // Deal with the errors

            log("[!] %s", err);
            resetGlobals();

            #ifdef TEST_MEMORY_MANAGER
            log("[D] EXIT : m_reallocator()");
            #endif

            return NULL;
      }
}

// ---------------------------------------------------------------------------------------------------------------------------------
// Deallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------

void  m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress)
{
      try
      {
            #ifdef TEST_MEMORY_MANAGER
            log("[D] ENTER: m_deallocator()");
            #endif

            // Log the request

            if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X           by %s", allocationTypes[deallocationType], (unsigned int) reportedAddress, ownerString(sourceFile, sourceLine, sourceFunc));

            // Go get the allocation unit

            sAllocUnit  *au = findAllocUnit(reportedAddress);

            // If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
            m_assert(au != NULL);
            if (au == NULL) throw "Request to deallocate RAM that was never allocated";

            // If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
            // already know that from a previous assert you should have seen in validateAllocUnit() :)
            m_assert(m_validateAllocUnit(au));

            // If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
            // tracking software, use the stack frame to locate the source and include our H file.
            m_assert(deallocationType != m_alloc_unknown);

            // If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
            // the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
            m_assert((deallocationType == m_alloc_delete       && au->allocationType == m_alloc_new      ) ||
                   (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
                   (deallocationType == m_alloc_free         && au->allocationType == m_alloc_malloc   ) ||
                   (deallocationType == m_alloc_free         && au->allocationType == m_alloc_calloc   ) ||
                   (deallocationType == m_alloc_free         && au->allocationType == m_alloc_realloc  ) ||
                   (deallocationType == m_alloc_unknown                                                ) );

            // If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
            // variable to determine information about this allocation unit.
            m_assert(au->breakOnDealloc == false);

            // Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
            // because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.

            wipeWithPattern(au, releasedPattern);

            // Do the deallocation

            free(au->actualAddress);

            // Remove this allocation unit from the hash table

            unsigned int      hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
            if (hashTable[hashIndex] == au)
            {
                  hashTable[hashIndex] = au->next;
            }
            else
            {
                  if (au->prev)     au->prev->next = au->next;
                  if (au->next)     au->next->prev = au->prev;
            }

            // Remove this allocation from our stats

            stats.totalReportedMemory -= au->reportedSize;
            stats.totalActualMemory   -= au->actualSize;
            stats.totalAllocUnitCount--;

            // Add this allocation unit to the front of our reservoir of unused allocation units

            memset(au, 0, sizeof(sAllocUnit));
            au->next = reservoir;
            reservoir = au;

            // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
            // source (i.e. they didn't include our H file) then we won't think it was the last allocation.

            resetGlobals();

            // Validate every single allocated unit in memory

            if (alwaysValidateAll) m_validateAllAllocUnits();

            // If we're in the midst of static deinitialization time, track any pending memory leaks

            if (staticDeinitTime) dumpLeakReport();
      }
      catch(const char *err)
      {
            // Deal with errors

            log("[!] %s", err);
            resetGlobals();
      }

      #ifdef TEST_MEMORY_MANAGER
      log("[D] EXIT : m_deallocator()");
      #endif
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
// bugs.
// ---------------------------------------------------------------------------------------------------------------------------------

bool  m_validateAddress(const void *reportedAddress)
{
      // Just see if the address exists in our allocation routines

      return findAllocUnit(reportedAddress) != NULL;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool  m_validateAllocUnit(const sAllocUnit *allocUnit)
{
      // Make sure the padding is untouched

      long  *pre = (long *) allocUnit->actualAddress;
      long  *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
      bool  errorFlag = false;
      for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
      {
            if (*pre != (long) prefixPattern)
            {
                  log("[!] A memory allocation unit was corrupt because of an underrun:");
                  m_dumpAllocUnit(allocUnit, "  ");
                  errorFlag = true;
            }

            // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
            // owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
            // variable 'allocUnit' to see statistics and information about this damaged allocation unit.
            m_assert(*pre == (long) prefixPattern);

            if (*post != (long) postfixPattern)
            {
                  log("[!] A memory allocation unit was corrupt because of an overrun:");
                  m_dumpAllocUnit(allocUnit, "  ");
                  errorFlag = true;
            }

            // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
            // owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
            // 'allocUnit' to see statistics and information about this damaged allocation unit.
            m_assert(*post == (long) postfixPattern);
      }

      // Return the error status (we invert it, because a return of 'false' means error)

      return !errorFlag;
}

// ---------------------------------------------------------------------------------------------------------------------------------

bool  m_validateAllAllocUnits()
{
      // Just go through each allocation unit in the hash table and count the ones that have errors

      unsigned int      errors = 0;
      unsigned int      allocCount = 0;
      for (unsigned int i = 0; i < hashSize; i++)
      {
            sAllocUnit  *ptr = hashTable[i];
            while(ptr)
            {
                  allocCount++;
                  if (!m_validateAllocUnit(ptr)) errors++;
                  ptr = ptr->next;
            }
      }

      // Test for hash-table correctness

      if (allocCount != stats.totalAllocUnitCount)
      {
            log("[!] Memory tracking hash table corrupt!");
            errors++;
      }

      // If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
      // best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
      // offending code. After running the application with these settings (and hitting this assert again), interrogate the
      // memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
      // assertion.
      m_assert(allocCount == stats.totalAllocUnitCount);

      // If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
      // prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
      m_assert(errors == 0);

      // Log any errors

      if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors);

      // Return the error status

      return errors != 0;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
// ---------------------------------------------------------------------------------------------------------------------------------

unsigned int      m_calcUnused(const sAllocUnit *allocUnit)
{
      const unsigned long     *ptr = (const unsigned long *) allocUnit->reportedAddress;
      unsigned int            count = 0;

      for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++)
      {
            if (*ptr == unusedPattern) count += sizeof(long);
      }

      return count;
}

// ---------------------------------------------------------------------------------------------------------------------------------

unsigned int      m_calcAllUnused()
{
      // Just go through each allocation unit in the hash table and count the unused RAM

      unsigned int      total = 0;
      for (unsigned int i = 0; i < hashSize; i++)
      {
            sAllocUnit  *ptr = hashTable[i];
            while(ptr)
            {
                  total += m_calcUnused(ptr);
                  ptr = ptr->next;
            }
      }

      return total;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following functions are for logging and statistics reporting.
// ---------------------------------------------------------------------------------------------------------------------------------

void  m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
{
      log("[I] %sAddress (reported): %010p",       prefix, allocUnit->reportedAddress);
      log("[I] %sAddress (actual)  : %010p",       prefix, allocUnit->actualAddress);
      log("[I] %sSize (reported)   : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize));
      log("[I] %sSize (actual)     : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize));
      log("[I] %sOwner             : %s(%d)::%s",  prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc);
      log("[I] %sAllocation type   : %s",          prefix, allocationTypes[allocUnit->allocationType]);
      log("[I] %sAllocation number : %d",          prefix, allocUnit->allocationNumber);
}

// ---------------------------------------------------------------------------------------------------------------------------------

void  m_dumpMemoryReport(const char *filename, const bool overwrite)
{
      // Open the report file

      FILE  *fp = NULL;
      
      if (overwrite)    fp = fopen(filename, "w+b");
      else        fp = fopen(filename, "ab");

      // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
      // some reason.)
      m_assert(fp);
      if (!fp) return;

        // Header

        static  char    timeString[25];
        memset(timeString, 0, sizeof(timeString));
        time_t  t = time(NULL);
        struct  tm *tme = localtime(&t);
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
        fprintf(fp, "|                                             Memory report for: %02d/%02d/%04d %02d:%02d:%02d                                               |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "\r\n");
      fprintf(fp, "\r\n");

      // Report summary

      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "|                                                           T O T A L S                                                            |\r\n");
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "              Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount));
      fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory));
      fprintf(fp, "         Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory));
      fprintf(fp, "           Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
      fprintf(fp, "\r\n");

      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "|                                                            P E A K S                                                             |\r\n");
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "              Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount));
      fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory));
      fprintf(fp, "                             Actual: %s\r\n", memorySizeString(stats.peakActualMemory));
      fprintf(fp, "           Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
      fprintf(fp, "\r\n");

      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "|                                                      A C C U M U L A T E D                                                       |\r\n");
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "              Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount));
      fprintf(fp, "            Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory));
      fprintf(fp, "                             Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory));
      fprintf(fp, "\r\n");

      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "|                                                           U N U S E D                                                            |\r\n");
      fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
      fprintf(fp, "    Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused()));
      fprintf(fp, "\r\n");

      dumpAllocations(fp);

      fclose(fp);
}

// ---------------------------------------------------------------------------------------------------------------------------------

sMStats     m_getMemoryStatistics()
{
      return stats;
}

// ---------------------------------------------------------------------------------------------------------------------------------
// mmgr.cpp - End of file
// ---------------------------------------------------------------------------------------------------------------------------------

Generated by  Doxygen 1.6.0   Back to index