Logo Search packages:      
Sourcecode: blender version File versions  Download package

DT_Complex.cpp

/*
 * SOLID - Software Library for Interference Detection
 * 
 * Copyright (C) 2001-2003  Dtecta.  All rights reserved.
 *
 * This library may be distributed under the terms of the Q Public License
 * (QPL) as defined by Trolltech AS of Norway and appearing in the file
 * LICENSE.QPL included in the packaging of this file.
 *
 * This library may be distributed and/or modified under the terms of the
 * GNU General Public License (GPL) version 2 as published by the Free Software
 * Foundation and appearing in the file LICENSE.GPL included in the
 * packaging of this file.
 *
 * This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Commercial use or any other use of this library not covered by either 
 * the QPL or the GPL requires an additional license from Dtecta. 
 * Please contact info@dtecta.com for enquiries about the terms of commercial
 * use of this library.
 */

#include <new>
#include <fstream>

#include "DT_Complex.h"
#include "DT_Minkowski.h"
#include "DT_Sphere.h"
#include "DT_Transform.h"

DT_Complex::DT_Complex(const DT_VertexBase *base) 
  : m_base(base),
    m_count(0),
    m_leaves(0),
      m_nodes(0)
{ 
      assert(base);
      base->addComplex(this);
}


DT_Complex::~DT_Complex()
{
    DT_Index i;
    for (i = 0; i != m_count; ++i) 
    {
        delete m_leaves[i];
    }
    delete [] m_leaves;
    delete [] m_nodes;
    
    m_base->removeComplex(this);
    if (m_base->isOwner()) 
    {
        delete m_base;
    }
}

void DT_Complex::finish(DT_Count n, const DT_Convex *p[]) 
{
      m_count = n;

   
    assert(n >= 1);

    m_leaves = new const DT_Convex *[n];
    assert(m_leaves);

    DT_CBox *boxes = new DT_CBox[n];
    DT_Index *indices = new DT_Index[n];
    assert(boxes);
       
    DT_Index i;
    for (i = 0; i != n; ++i) 
    {
        m_leaves[i] = p[i];
        boxes[i].set(p[i]->bbox());
        indices[i] = i;
    }

    m_cbox = boxes[0];
    for (i = 1; i != n; ++i) 
    {
        m_cbox = m_cbox.hull(boxes[i]);
    }

    if (n == 1)
    {
        m_nodes = 0;
        m_type = DT_BBoxTree::LEAF;
    }
    else 
    {
        m_nodes = new DT_BBoxNode[n - 1];
        assert(m_nodes);
    
        int num_nodes = 0;
        new(&m_nodes[num_nodes++]) DT_BBoxNode(0, n, num_nodes, m_nodes, boxes, indices, m_cbox);

        assert(num_nodes == n - 1);
        
        m_type = DT_BBoxTree::INTERNAL;
    }

    delete [] boxes;
}


MT_BBox DT_Complex::bbox(const MT_Transform& t, MT_Scalar margin) const 
{
    MT_Matrix3x3 abs_b = t.getBasis().absolute();  
    MT_Point3 center = t(m_cbox.getCenter());
    MT_Vector3 extent(margin + abs_b[0].dot(m_cbox.getExtent()),
                      margin + abs_b[1].dot(m_cbox.getExtent()),
                      margin + abs_b[2].dot(m_cbox.getExtent()));
    
    return MT_BBox(center - extent, center + extent);
}

inline DT_CBox computeCBox(const DT_Convex *p)
{
    return DT_CBox(p->bbox()); 
}

inline DT_CBox computeCBox(MT_Scalar margin, const MT_Transform& xform) 
{
    const MT_Matrix3x3& basis = xform.getBasis();
    return DT_CBox(MT_Point3(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)), 
                   MT_Vector3(basis[0].length() * margin, 
                              basis[1].length() * margin, 
                              basis[2].length() * margin));
} 

void DT_Complex::refit()
{
    DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);
    DT_Index i = m_count - 1;
    while (i--)
    {
        ::refit(m_nodes[i], rd);
    }
    m_cbox = m_type == DT_BBoxTree::LEAF ? computeCBox(m_leaves[0]) : m_nodes[0].hull();
}

inline bool ray_cast(const DT_RootData<const DT_Convex *>& rd, DT_Index index, const MT_Point3& source, const MT_Point3& target, 
                     MT_Scalar& lambda, MT_Vector3& normal)
{
    return rd.m_leaves[index]->ray_cast(source, target, lambda, normal);
}

bool DT_Complex::ray_cast(const MT_Point3& source, const MT_Point3& target,
                          MT_Scalar& lambda, MT_Vector3& normal) const 
{
    DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);

    return ::ray_cast(DT_BBoxTree(m_cbox, 0, m_type), rd, source, target, lambda, normal);
}

inline bool intersect(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    return ::intersect((a_margin > MT_Scalar(0.0) ? 
                        static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :  
                        static_cast<const DT_Convex&>(ta)), 
                       pack.m_b, v); 
}

bool intersect(const DT_Complex& a,  const MT_Transform& a2w,  MT_Scalar a_margin, 
               const DT_Convex& b, MT_Vector3& v) 
{
    DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);

    return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v);
}

inline bool intersect(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
    MT_Scalar b_margin = pack.m_b.m_plus;
    return ::intersect((a_margin > MT_Scalar(0.0) ?
                        static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) : 
                        static_cast<const DT_Convex&>(ta)), 
                       (b_margin > MT_Scalar(0.0) ? 
                        static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) : 
                        static_cast<const DT_Convex&>(tb)), 
                       v);   
}

bool intersect(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
               const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, MT_Vector3& v) 
{
    DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
                                                  DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));


    return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
                     DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v);
}

inline bool common_point(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    return ::common_point((a_margin > MT_Scalar(0.0) ? 
                           static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
                           static_cast<const DT_Convex&>(ta)), 
                          pack.m_b, v, pa, pb); 
}
    
bool common_point(const DT_Complex& a,  const MT_Transform& a2w,  MT_Scalar a_margin, 
                  const DT_Convex& b, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
     DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);

    return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pb, pa);
}

inline bool common_point(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
    MT_Scalar b_margin = pack.m_b.m_plus;
    return ::common_point((a_margin > MT_Scalar(0.0) ? 
                           static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) : 
                           static_cast<const DT_Convex&>(ta)), 
                          (b_margin > MT_Scalar(0.0) ? 
                           static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) : 
                           static_cast<const DT_Convex&>(tb)), 
                          v, pa, pb);    
}
    
bool common_point(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
                  const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, 
                  MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
                                                  DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));

    return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
                        DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type),  pack, v, pa, pb);
}

inline bool penetration_depth(const DT_HybridPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, pack.m_b, pack.m_margin, v, pa, pb); 
}

bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin, 
                       const DT_Convex& b, MT_Scalar b_margin, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_HybridPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b, b_margin);
     
    MT_Scalar  max_pen_len = MT_Scalar(0.0);
    return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pa, pb, max_pen_len);
}

inline bool penetration_depth(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
    return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, tb, pack.m_a.m_plus, v, pa, pb);  
}

bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
                       const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, 
                       MT_Vector3& v, MT_Point3& pa, MT_Point3& pb) 
{
    DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
                                                  DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));

    MT_Scalar  max_pen_len = MT_Scalar(0.0);
    return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
                             DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v, pa, pb, max_pen_len);
}



inline MT_Scalar closest_points(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    return ::closest_points((a_margin > MT_Scalar(0.0) ? 
                             static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :  
                             static_cast<const DT_Convex&>(ta)), 
                            pack.m_b, max_dist2, pa, pb); 
}

MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
                         const DT_Convex& b, MT_Point3& pa, MT_Point3& pb)
{
    DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);

    return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, MT_INFINITY, pa, pb); 
}

inline MT_Scalar closest_points(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb) 
{
    DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
    MT_Scalar a_margin = pack.m_a.m_plus;
    DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
    MT_Scalar b_margin = pack.m_b.m_plus;
    return ::closest_points((a_margin > MT_Scalar(0.0) ? 
                             static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) : 
                             static_cast<const DT_Convex&>(ta)), 
                            (b_margin > MT_Scalar(0.0) ? 
                             static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) : 
                             static_cast<const DT_Convex&>(tb)), max_dist2, pa, pb);     
}

MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
                         const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, 
                         MT_Point3& pa, MT_Point3& pb) 
{
    DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
                               DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));

    return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
                          DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, MT_INFINITY, pa, pb);
}



Generated by  Doxygen 1.6.0   Back to index