Logo Search packages:      
Sourcecode: blender version File versions

truespace_export.py

#!BPY

"""
Name: 'TrueSpace (.cob)...'
Blender: 232
Group: 'Export'
Tooltip: 'Export selected meshes to TrueSpace File Format (.cob)'
"""

__author__ = "Anthony D'Agostino (Scorpius)"
__url__ = ("blender", "elysiun",
"Author's homepage, http://www.redrival.com/scorpius")
__version__ = "Part of IOSuite 0.5"

__bpydoc__ = """\
This script exports meshes to TrueSpace file format.

TrueSpace is a commercial modeling and rendering application. The .cob
file format is composed of 'chunks,' is well defined, and easy to read and
write. It's very similar to LightWave's lwo format.

Usage:<br>
      Select meshes to be exported and run this script from "File->Export" menu.

Supported:<br>
      Vertex colors will be exported, if they are present.

Known issues:<br>
      Before exporting to .cob format, the mesh must have real-time UV
coordinates.  Press the FKEY to assign them.

Notes:<br>
      There are a few differences between how Blender & TrueSpace represent
their objects' transformation matrices. Blender simply uses a 4x4 matrix,
and trueSpace splits it into the following two fields.

      For the 'Local Axes' values: The x, y, and z-axis represent a simple
rotation matrix.  This is equivalent to Blender's object matrix before
it was combined with the object's scaling matrix. Dividing each value by
the appropriate scaling factor (and transposing at the same time)
produces the original rotation matrix.

      For the 'Current Position' values:  This is equivalent to Blender's
object matrix except that the last row is omitted and the xyz location
is used in the last column. Binary format uses a 4x3 matrix, ascii
format uses a 4x4 matrix.

For Cameras: The matrix here gets a little confusing, and I'm not sure of 
how to handle it.
"""


# $Id: truespace_export.py,v 1.5 2004/11/30 02:27:46 ianwill Exp $
#
# +---------------------------------------------------------+
# | Copyright (c) 2001 Anthony D'Agostino                   |
# | http://www.redrival.com/scorpius                        |
# | scorpius@netzero.com                                    |
# | June 12, 2001                                           |
# | Released under the Blender Artistic Licence (BAL)       |
# | Import Export Suite v0.5                                |
# +---------------------------------------------------------+
# | Read and write Caligari trueSpace File Format (*.cob)   |
# +---------------------------------------------------------+

import Blender, mod_meshtools
import struct, os, cStringIO, time

# ==============================
# === Write trueSpace Format ===
# ==============================
def write(filename):
      start = time.clock()
      file = open(filename, "wb")
      objects = Blender.Object.GetSelected()

      write_header(file)

      G,P,V,U,M = 1000,2000,3000,4000,5000
      for object in objects:
            objname = object.name
            meshname = object.data.name
            mesh = Blender.NMesh.GetRaw(meshname)
            obj = Blender.Object.Get(objname)
            if not mesh: continue

            grou = generate_grou('Group ' + `objects.index(object)+1`)
            polh = generate_polh(objname, obj, mesh)
            if mod_meshtools.has_vertex_colors(mesh): vcol = generate_vcol(mesh)
            unit = generate_unit()
            mat1 = generate_mat1(mesh)

            if objects.index(object) == 0: X = 0

            write_chunk(file, "Grou", 0, 1, G, X, grou)
            write_chunk(file, "PolH", 0, 4, P, G, polh)
            if mod_meshtools.has_vertex_colors(mesh) and vcol:
                  write_chunk(file, "VCol", 1, 0, V, P, vcol)
            write_chunk(file, "Unit", 0, 1, U, P, unit)
            write_chunk(file, "Mat1", 0, 5, M, P, mat1)

            X = G
            G,P,V,U,M = map(lambda x: x+1, [G,P,V,U,M])

      write_chunk(file, "END ", 1, 0, 0, 0, '') # End Of File Chunk

      Blender.Window.DrawProgressBar(1.0, '')  # clear progressbar
      file.close()
      end = time.clock()
      seconds = " in %.2f %s" % (end-start, "seconds")
      message = "Successfully exported " + os.path.basename(filename) + seconds
      mod_meshtools.print_boxed(message)

# =============================
# === Write COB File Header ===
# =============================
def write_header(file):
      file.write("Caligari V00.01BLH"+" "*13+"\n")

# ===================
# === Write Chunk ===
# ===================
def write_chunk(file, name, major, minor, chunk_id, parent_id, data):
      file.write(name)
      file.write(struct.pack("<2h", major, minor))
      file.write(struct.pack("<2l", chunk_id, parent_id))
      file.write(struct.pack("<1l", len(data)))
      file.write(data)

# ============================================
# === Generate PolH (Polygonal Data) Chunk ===
# ============================================
def generate_polh(objname, obj, mesh):
      data = cStringIO.StringIO()
      write_ObjectName(data, objname)
      write_LocalAxes(data, obj)
      write_CurrentPosition(data, obj)
      write_VertexList(data, mesh)
      uvcoords = write_UVCoordsList(data, mesh)
      write_FaceList(data, mesh, uvcoords)
      return data.getvalue()

# === Write Object Name ===
def write_ObjectName(data, objname):
      data.write(struct.pack("<h", 0))  # dupecount
      data.write(struct.pack("<h", len(objname)))
      data.write(objname)

# === Write Local Axes ===
def write_LocalAxes(data, obj):
      data.write(struct.pack("<fff", obj.mat[3][0], obj.mat[3][1], obj.mat[3][2]))
      data.write(struct.pack("<fff", obj.mat[0][0]/obj.SizeX, obj.mat[1][0]/obj.SizeX, obj.mat[2][0]/obj.SizeX))
      data.write(struct.pack("<fff", obj.mat[0][1]/obj.SizeY, obj.mat[1][1]/obj.SizeY, obj.mat[2][1]/obj.SizeY))
      data.write(struct.pack("<fff", obj.mat[0][2]/obj.SizeZ, obj.mat[1][2]/obj.SizeZ, obj.mat[2][2]/obj.SizeZ))

# === Write Current Position ===
def write_CurrentPosition(data, obj):
      data.write(struct.pack("<ffff", obj.mat[0][0], obj.mat[0][1], obj.mat[0][2], obj.mat[3][0]))
      data.write(struct.pack("<ffff", obj.mat[1][0], obj.mat[1][1], obj.mat[1][2], obj.mat[3][1]))
      data.write(struct.pack("<ffff", obj.mat[2][0], obj.mat[2][1], obj.mat[2][2], obj.mat[3][2]))

# === Write Vertex List ===
def write_VertexList(data, mesh):
      data.write(struct.pack("<l", len(mesh.verts)))
      for i in range(len(mesh.verts)):
            if not i%100 and mod_meshtools.show_progress:
                  Blender.Window.DrawProgressBar(float(i)/len(mesh.verts), "Writing Verts")
            x, y, z = mesh.verts[i].co
            data.write(struct.pack("<fff", -y, x, z))

# === Write UV Vertex List ===
def write_UVCoordsList(data, mesh):
      if not mesh.hasFaceUV():
            data.write(struct.pack("<l", 1))
            data.write(struct.pack("<2f", 0,0))
            return {(0,0): 0}
            # === Default UV Coords (one image per face) ===
            # data.write(struct.pack("<l", 4))
            # data.write(struct.pack("<8f", 0,0, 0,1, 1,1, 1,0))
            # return {(0,0): 0, (0,1): 1, (1,1): 2, (1,0): 3}
            # === Default UV Coords (one image per face) ===

      # === collect, remove duplicates, add indices, and write the uv list ===
      uvdata = cStringIO.StringIO()
      uvcoords = {}
      uvidx = 0
      for i in range(len(mesh.faces)):
            if not i%100 and mod_meshtools.show_progress:
                  Blender.Window.DrawProgressBar(float(i)/len(mesh.faces), "Writing UV Coords")
            numfaceverts = len(mesh.faces[i].v)
            for j in range(numfaceverts-1, -1, -1):   # Reverse order
                  u,v = mesh.faces[i].uv[j]
                  if not uvcoords.has_key((u,v)):
                        uvcoords[(u,v)] = uvidx
                        uvidx += 1
                        uvdata.write(struct.pack("<ff", u,v))
      uvdata = uvdata.getvalue()

      numuvcoords = len(uvdata)/8
      data.write(struct.pack("<l", numuvcoords))
      data.write(uvdata)
      #print "Number of uvcoords:", numuvcoords, '=', len(uvcoords)
      return uvcoords

# === Write Face List ===
def write_FaceList(data, mesh, uvcoords):
      data.write(struct.pack("<l", len(mesh.faces)))
      for i in range(len(mesh.faces)):
            if not i%100 and mod_meshtools.show_progress:
                  Blender.Window.DrawProgressBar(float(i)/len(mesh.faces), "Writing Faces")
            numfaceverts = len(mesh.faces[i].v)
            data.write(struct.pack("<B", 0x10))         # Cull Back Faces Flag
            data.write(struct.pack("<h", numfaceverts))
            data.write(struct.pack("<h", 0))            # Material Index
            for j in range(numfaceverts-1, -1, -1):   # Reverse order
                  index = mesh.faces[i].v[j].index
                  if mesh.hasFaceUV():
                        uv = mesh.faces[i].uv[j]
                        uvidx = uvcoords[uv]
                  else:
                        uvidx = 0
                  data.write(struct.pack("<ll", index, uvidx))

# ===========================================
# === Generate VCol (Vertex Colors) Chunk ===
# ===========================================
def generate_vcol(mesh):
      data = cStringIO.StringIO()
      data.write(struct.pack("<l", len(mesh.faces)))
      uniquecolors = {}
      unique_alpha = {}
      for i in range(len(mesh.faces)):
            if not i%100 and mod_meshtools.show_progress:
                  Blender.Window.DrawProgressBar(float(i)/len(mesh.faces), "Writing Vertex Colors")
            numfaceverts = len(mesh.faces[i].v)
            data.write(struct.pack("<ll", i, numfaceverts))
            for j in range(numfaceverts-1, -1, -1):   # Reverse order
                  r = mesh.faces[i].col[j].r
                  g = mesh.faces[i].col[j].g
                  b = mesh.faces[i].col[j].b
                  a = 100  # 100 is opaque in ts
                  uniquecolors[(r,g,b)] = None
                  unique_alpha[mesh.faces[i].col[j].a] = None
                  data.write(struct.pack("<BBBB", r,g,b,a))

      #print "uniquecolors:", uniquecolors.keys()
      #print "unique_alpha:", unique_alpha.keys()
      if len(uniquecolors) == 1:
            return None
      else:
            return data.getvalue()

# ==================================
# === Generate Unit (Size) Chunk ===
# ==================================
def generate_unit():
      data = cStringIO.StringIO()
      data.write(struct.pack("<h", 2))
      return data.getvalue()

# ======================================
# === Generate Mat1 (Material) Chunk ===
# ======================================
def generate_mat1(mesh):
      data = cStringIO.StringIO()
      data.write(struct.pack("<h", 0))
      data.write(struct.pack("<ccB", "p", "a", 0))
      data.write(struct.pack("<fff", 1.0, 1.0, 1.0))  # rgb (0.0 - 1.0)
      data.write(struct.pack("<fffff", 1, 1, 0, 0, 1))
      if mesh.hasFaceUV():
            tex_mapname = r"c:\image\maps\one-dot.tga"
            data.write("t:")
            data.write(struct.pack("<B", 0x00))
            data.write(struct.pack("<h", len(tex_mapname)))
            data.write(tex_mapname)
            data.write(struct.pack("<4f", 0,0, 1,1))
      return data.getvalue()

# ============================
# === Generate Group Chunk ===
# ============================
def generate_grou(name):
      data = cStringIO.StringIO()
      write_ObjectName(data, name)
      data.write(struct.pack("<12f", 0,0,0, 1,0,0, 0,1,0, 0,0,1))
      data.write(struct.pack("<12f", 1,0,0,0, 0,1,0,0, 0,0,1,0))
      return data.getvalue()

def fs_callback(filename):
      if filename.find('.cob', -4) <= 0: filename += '.cob'
      write(filename)

Blender.Window.FileSelector(fs_callback, "Export COB")

# === Matrix Differences between Blender & trueSpace ===
#
# For the 'Local Axes' values:
# The x, y, and z-axis represent a simple rotation matrix.
# This is equivalent to Blender's object matrix before it was
# combined with the object's scaling matrix.  Dividing each value
# by the appropriate scaling factor (and transposing at the same
# time) produces the original rotation matrix.
#
# For the 'Current Position' values:
# This is equivalent to Blender's object matrix except that the
# last row is omitted and the xyz location is used in the last
# column.  Binary format uses a 4x3 matrix, ascii format uses a 4x4
# matrix.
#
# For Cameras: The matrix is a little confusing.

Generated by  Doxygen 1.6.0   Back to index