Logo Search packages:      
Sourcecode: blender version File versions

qr.h

/**
 * $Id: qr.h,v 1.4 2002/11/20 14:43:09 mein Exp $
 */

/*

*
* Template Numerical Toolkit (TNT): Linear Algebra Module
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain.  The Template Numerical Toolkit (TNT) is
* an experimental system.  NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
* BETA VERSION INCOMPLETE AND SUBJECT TO CHANGE
* see http://math.nist.gov/tnt for latest updates.
*
*/


#ifndef QR_H
#define QR_H

// Classical QR factorization example, based on Stewart[1973].
//
//
// This algorithm computes the factorization of a matrix A
// into a product of an orthognal matrix (Q) and an upper triangular 
// matrix (R), such that QR = A.
//
// Parameters:
//
//  A   (in):       Matrix(1:N, 1:N)
//
//  Q   (output):   Matrix(1:N, 1:N), collection of Householder
//                      column vectors Q1, Q2, ... QN
//
//  R   (output):   upper triangular Matrix(1:N, 1:N)
//
// Returns:  
//
//  0 if successful, 1 if A is detected to be singular
//


#include <cmath>      //for sqrt() & fabs()
#include "tntmath.h"  // for sign()

// Classical QR factorization, based on Stewart[1973].
//
//
// This algorithm computes the factorization of a matrix A
// into a product of an orthognal matrix (Q) and an upper triangular 
// matrix (R), such that QR = A.
//
// Parameters:
//
//  A   (in/out):  On input, A is square, Matrix(1:N, 1:N), that represents
//                  the matrix to be factored.
//
//                 On output, Q and R is encoded in the same Matrix(1:N,1:N)
//                 in the following manner:
//
//                  R is contained in the upper triangular section of A,
//                  except that R's main diagonal is in D.  The lower
//                  triangular section of A represents Q, where each
//                  column j is the vector  Qj = I - uj*uj'/pi_j.
//
//  C  (output):    vector of Pi[j]
//  D  (output):    main diagonal of R, i.e. D(i) is R(i,i)
//
// Returns:  
//
//  0 if successful, 1 if A is detected to be singular
//

namespace TNT
{

template <class MaTRiX, class Vector>
int QR_factor(MaTRiX &A, Vector& C, Vector &D)
{
    assert(A.lbound() == 1);        // ensure these are all 
    assert(C.lbound() == 1);        // 1-based arrays and vectors
    assert(D.lbound() == 1);

    Subscript M = A.num_rows();
    Subscript N = A.num_cols(); 

    assert(M == N);                 // make sure A is square

    Subscript i,j,k;
    typename MaTRiX::element_type eta, sigma, sum;

    // adjust the shape of C and D, if needed...

    if (N != C.size())  C.newsize(N);
    if (N != D.size())  D.newsize(N);

    for (k=1; k<N; k++)
    {
        // eta = max |M(i,k)|,  for k <= i <= n
        //
        eta = 0;
        for (i=k; i<=N; i++)
        {
            double absA = fabs(A(i,k));
            eta = ( absA >  eta ? absA : eta ); 
        }

        if (eta == 0)           // matrix is singular
        {
            cerr << "QR: k=" << k << "\n";
            return 1;
        }

        // form Qk and premiltiply M by it
        //
        for(i=k; i<=N; i++)
            A(i,k)  = A(i,k) / eta;

        sum = 0;
        for (i=k; i<=N; i++)
            sum = sum + A(i,k)*A(i,k);
        sigma = sign(A(k,k)) *  sqrt(sum);


        A(k,k) = A(k,k) + sigma;
        C(k) = sigma * A(k,k);
        D(k) = -eta * sigma;

        for (j=k+1; j<=N; j++)
        {
            sum = 0;
            for (i=k; i<=N; i++)
                sum = sum + A(i,k)*A(i,j);
            sum = sum / C(k);

            for (i=k; i<=N; i++)
                A(i,j) = A(i,j) - sum * A(i,k);
        }

        D(N) = A(N,N);
    }

    return 0;
}

// modified form of upper triangular solve, except that the main diagonal
// of R (upper portion of A) is in D.
//
template <class MaTRiX, class Vector>
int R_solve(const MaTRiX &A, /*const*/ Vector &D, Vector &b)
{
    assert(A.lbound() == 1);        // ensure these are all 
    assert(D.lbound() == 1);        // 1-based arrays and vectors
    assert(b.lbound() == 1);

    Subscript i,j;
    Subscript N = A.num_rows();

    assert(N == A.num_cols());
    assert(N == D.dim());
    assert(N == b.dim());

    typename MaTRiX::element_type sum;

    if (D(N) == 0)
        return 1;

    b(N) = b(N) / 
            D(N);

    for (i=N-1; i>=1; i--)
    {
        if (D(i) == 0)
            return 1;
        sum = 0;
        for (j=i+1; j<=N; j++)
            sum = sum + A(i,j)*b(j);
        b(i) = ( b(i) - sum ) / 
            D(i);
    }

    return 0;
}


template <class MaTRiX, class Vector>
int QR_solve(const MaTRiX &A, const Vector &c, /*const*/ Vector &d, 
        Vector &b)
{
    assert(A.lbound() == 1);        // ensure these are all 
    assert(c.lbound() == 1);        // 1-based arrays and vectors
    assert(d.lbound() == 1);

    Subscript N=A.num_rows();

    assert(N == A.num_cols());
    assert(N == c.dim());
    assert(N == d.dim());
    assert(N == b.dim());

    Subscript i,j;
    typename MaTRiX::element_type sum, tau;

    for (j=1; j<N; j++)
    {
        // form Q'*b
        sum = 0;
        for (i=j; i<=N; i++)
            sum = sum + A(i,j)*b(i);
        if (c(j) == 0)
            return 1;
        tau = sum / c(j);
       for (i=j; i<=N; i++)
            b(i) = b(i) - tau * A(i,j);
    }
    return R_solve(A, d, b);        // solve Rx = Q'b
}

} // namespace TNT

#endif // QR_H


Generated by  Doxygen 1.6.0   Back to index