Logo Search packages:      
Sourcecode: blender version File versions

curve.c

/*  curve.c 
 * 
 *  
 * $Id: curve.c,v 1.8 2004/10/31 14:43:27 ton Exp $
 *
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): none yet.
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

#define STRUBI hack

#include <math.h>  // floor
#include <string.h>
#include <stdlib.h>  

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#ifdef WIN32
#include "BLI_winstuff.h"
#endif
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"  
#include "BLI_arithb.h"  

#include "DNA_object_types.h"  
#include "DNA_curve_types.h"  
#include "DNA_material_types.h"  

/* for dereferencing pointers */
#include "DNA_ID.h"  
#include "DNA_vfont_types.h"  
#include "DNA_key_types.h"  
#include "DNA_ipo_types.h"  

#include "BKE_global.h" 
#include "BKE_main.h"  
#include "BKE_utildefines.h"  // VECCOPY
#include "BKE_object.h"  
#include "BKE_mesh.h" 
#include "BKE_curve.h"  
#include "BKE_displist.h"  
#include "BKE_ipo.h"  
#include "BKE_anim.h"  
#include "BKE_library.h"  
#include "BKE_key.h"  


/* globals */

extern ListBase editNurb;  /* editcurve.c */

/* local */
int cu_isectLL(float *v1, float *v2, float *v3, float *v4, 
                     short cox, short coy, 
                     float *labda, float *mu, float *vec);


#ifdef STRUBI
/* hotfix; copies x*y array into extended (x+dx)*(y+dy) array
old[] and new[] can be the same ! */
int copyintoExtendedArray(float *old, int oldx, int oldy, float *new, int newx, int newy)
{
      int x, y, ttt, ooo;
      float *oldp, *newp;
        
      if (newx < oldx || newy < oldy) return 0;
      
            
      for (y = newy - 1; y >= oldy; y--) {      
                ttt = y * newx;
            for (x = newx - 1; x >= 0; x--) {
                  newp = new + 3 * (ttt + x);
                  newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
            }
      }     

      for (; y >= 0; y--) {
            ttt = y * newx;
                ooo = y * oldx;
            for (x = newx - 1; x >= oldx; x--) {      
                  newp = new + 3 * (ttt + x);
                  newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
            }
            for (; x  >= 0; x--) {
                  oldp = old + 3 * (ooo + x);
                  newp = new + 3 * (ttt + x);
                  VECCOPY(newp, oldp);
            }
      }
      return 1;
}
#endif

void unlink_curve(Curve *cu)
{
      int a;
      
      for(a=0; a<cu->totcol; a++) {
            if(cu->mat[a]) cu->mat[a]->id.us--;
            cu->mat[a]= 0;
      }
      if(cu->vfont) cu->vfont->id.us--; 
      cu->vfont= 0;
      if(cu->key) cu->key->id.us--;
      cu->key= 0;
      if(cu->ipo) cu->ipo->id.us--;
      cu->ipo= 0;
}


/* niet curve zelf vrijgeven */
void free_curve(Curve *cu)
{

      freeNurblist(&cu->nurb);
      BLI_freelistN(&cu->bev);
      freedisplist(&cu->disp);
      
      unlink_curve(cu);
      
      if(cu->mat) MEM_freeN(cu->mat);
      if(cu->str) MEM_freeN(cu->str);
      if(cu->bb) MEM_freeN(cu->bb);
      if(cu->path) free_path(cu->path);
}

Curve *add_curve(int type)
{
      Curve *cu;
      char *str;
      
      if(type==OB_CURVE) str= "Curve";
      else if(type==OB_SURF) str= "Surf";
      else str= "Text";

      cu= alloc_libblock(&G.main->curve, ID_CU, str);
      
      cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
      cu->flag= CU_FRONT+CU_BACK;
      cu->pathlen= 100;
      cu->resolu= cu->resolv= 6;
      cu->width= 1.0;
      cu->spacing= cu->linedist= 1.0;
      cu->fsize= 1.0;
      cu->texflag= CU_AUTOSPACE;
      
      cu->bb= unit_boundbox();
      
      return cu;
}

Curve *copy_curve(Curve *cu)
{
      Curve *cun;
      int a;
      
      cun= copy_libblock(cu);
      cun->nurb.first= cun->nurb.last= 0;
      duplicateNurblist( &(cun->nurb), &(cu->nurb));

      cun->mat= MEM_dupallocN(cu->mat);
      for(a=0; a<cun->totcol; a++) {
            id_us_plus((ID *)cun->mat[a]);
      }
      
      cun->str= MEM_dupallocN(cu->str);
      cun->bb= MEM_dupallocN(cu->bb);
      
      cun->key= copy_key(cu->key);
      if(cun->key) cun->key->from= (ID *)cun;
      
      cun->disp.first= cun->disp.last= 0;
      cun->bev.first= cun->bev.last= 0;
      cun->path= 0;

      /* single user ipo too */
      if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);

      id_us_plus((ID *)cun->vfont);
      
      return cun;
}

void make_local_curve(Curve *cu)
{
      Object *ob = 0;
      Curve *cun;
      int local=0, lib=0;
      
      /* - when there are only lib users: don't do
       * - when there are only local users: set flag
       * - mixed: do a copy
       */
      
      if(cu->id.lib==0) return;
      
      if(cu->vfont) cu->vfont->id.lib= 0;
      
      if(cu->id.us==1) {
            cu->id.lib= 0;
            cu->id.flag= LIB_LOCAL;
            new_id(0, (ID *)cu, 0);
            return;
      }
      
      ob= G.main->object.first;
      while(ob) {
            if(ob->data==cu) {
                  if(ob->id.lib) lib= 1;
                  else local= 1;
            }
            ob= ob->id.next;
      }
      
      if(local && lib==0) {
            cu->id.lib= 0;
            cu->id.flag= LIB_LOCAL;
            new_id(0, (ID *)cu, 0);
      }
      else if(local && lib) {
            cun= copy_curve(cu);
            cun->id.us= 0;
            
            ob= G.main->object.first;
            while(ob) {
                  if(ob->data==cu) {
                        
                        if(ob->id.lib==0) {
                              ob->data= cun;
                              cun->id.us++;
                              cu->id.us--;
                        }
                  }
                  ob= ob->id.next;
            }
      }
}


void test_curve_type(Object *ob)
{
      Nurb *nu;
      Curve *cu;
      
      cu= ob->data;
      if(cu->vfont) {
            ob->type= OB_FONT;
            return;
      }
      else {
            nu= cu->nurb.first;
            while(nu) {
                  if(nu->pntsv>1) {
                        ob->type= OB_SURF;
                        return;
                  }
                  nu= nu->next;
            }
      }
      ob->type= OB_CURVE;
}

void tex_space_curve(Curve *cu)
{
      DispList *dl;
      BoundBox *bb;
      float *data, min[3], max[3], loc[3], size[3];
      int tot, doit= 0;
      
      if(cu->bb==0) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
      bb= cu->bb;
      
      INIT_MINMAX(min, max);

      dl= cu->disp.first;
      while(dl) {
            
            if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
            else tot= dl->nr*dl->parts;
            
            if(tot) doit= 1;
            data= dl->verts;
            while(tot--) {
                  DO_MINMAX(data, min, max);
                  data+= 3;
            }
            dl= dl->next;
      }

      if(doit) {
            loc[0]= (min[0]+max[0])/2.0f;
            loc[1]= (min[1]+max[1])/2.0f;
            loc[2]= (min[2]+max[2])/2.0f;
            
            size[0]= (max[0]-min[0])/2.0f;
            size[1]= (max[1]-min[1])/2.0f;
            size[2]= (max[2]-min[2])/2.0f;
      }
      else {
            loc[0]= loc[1]= loc[2]= 0.0f;
            size[0]= size[1]= size[2]= 1.0f;
      }
      
      bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
      bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
      
      bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
      bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];

      bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
      bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];

      if(cu->texflag & CU_AUTOSPACE) {
            VECCOPY(cu->loc, loc);
            VECCOPY(cu->size, size);
            cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;

            if(cu->size[0]==0.0) cu->size[0]= 1.0;
            else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
            else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
      
            if(cu->size[1]==0.0) cu->size[1]= 1.0;
            else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
            else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
      
            if(cu->size[2]==0.0) cu->size[2]= 1.0;
            else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
            else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;

      }
}


int count_curveverts(ListBase *nurb)
{
      Nurb *nu;
      int tot=0;
      
      nu= nurb->first;
      while(nu) {
            if(nu->bezt) tot+= 3*nu->pntsu;
            else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
            
            nu= nu->next;
      }
      return tot;
}



/* **************** NURBS ROUTINES ******************** */

void freeNurb(Nurb *nu)
{

      if(nu==0) return;

      if(nu->bezt) MEM_freeN(nu->bezt);
      nu->bezt= 0;
      if(nu->bp) MEM_freeN(nu->bp);
      nu->bp= 0;
      if(nu->knotsu) MEM_freeN(nu->knotsu);
      nu->knotsu= 0;
      if(nu->knotsv) MEM_freeN(nu->knotsv);
      nu->knotsv= 0;
      /* if(nu->trim.first) freeNurblist(&(nu->trim)); */

      MEM_freeN(nu);

}


void freeNurblist(ListBase *lb)
{
      Nurb *nu, *next;

      if(lb==0) return;

      nu= lb->first;
      while(nu) {
            next= nu->next;
            freeNurb(nu);
            nu= next;
      }
      lb->first= lb->last= 0;
}

Nurb *duplicateNurb(Nurb *nu)
{
      Nurb *newnu;
      int len;

      newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
      if(newnu==0) return 0;
      memcpy(newnu, nu, sizeof(Nurb));

      if(nu->bezt) {
            newnu->bezt=
                  (BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
            memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
      }
      else {
            len= nu->pntsu*nu->pntsv;
            newnu->bp=
                  (BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
            memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
            
            newnu->knotsu=newnu->knotsv= 0;
            
            if(nu->knotsu) {
                  len= KNOTSU(nu);
                  if(len) {
                        newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
                        memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
                  }
            }
            if(nu->pntsv>1 && nu->knotsv) {
                  len= KNOTSV(nu);
                  if(len) {
                        newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
                        memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
                  }
            }
      }
      return newnu;
}

void duplicateNurblist(ListBase *lb1, ListBase *lb2)
{
      Nurb *nu, *nun;
      
      freeNurblist(lb1);
      
      nu= lb2->first;
      while(nu) {
            nun= duplicateNurb(nu);
            BLI_addtail(lb1, nun);
            
            nu= nu->next;
      }
}

void test2DNurb(Nurb *nu)
{
      BezTriple *bezt;
      BPoint *bp;
      int a;

      if( nu->type== CU_BEZIER+CU_2D ) {
            a= nu->pntsu;
            bezt= nu->bezt;
            while(a--) {
                  bezt->vec[0][2]= 0.0; 
                  bezt->vec[1][2]= 0.0; 
                  bezt->vec[2][2]= 0.0;
                  bezt++;
            }
      }
      else if(nu->type & CU_2D) {
            a= nu->pntsu*nu->pntsv;
            bp= nu->bp;
            while(a--) {
                  bp->vec[2]= 0.0;
                  bp++;
            }
      }
}

void minmaxNurb(Nurb *nu, float *min, float *max)
{
      BezTriple *bezt;
      BPoint *bp;
      int a;

      if( (nu->type & 7)==CU_BEZIER ) {
            a= nu->pntsu;
            bezt= nu->bezt;
            while(a--) {
                  DO_MINMAX(bezt->vec[0], min, max);
                  DO_MINMAX(bezt->vec[1], min, max);
                  DO_MINMAX(bezt->vec[2], min, max);
                  bezt++;
            }
      }
      else {
            a= nu->pntsu*nu->pntsv;
            bp= nu->bp;
            while(a--) {
                  DO_MINMAX(bp->vec, min, max);
                  bp++;
            }
      }

}

/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */


/* actually, doubles should be used here as much as possible */

void extend_spline(float * pnts, int in, int out)
{
      float *_pnts;
      double * add;
      int i, j, k, in2;

      _pnts = pnts;
      add = (double*)MEM_mallocN((in)* sizeof(double), "extend_spline");

        in2 = in -1;

      for (k = 3; k > 0; k--){
            pnts = _pnts;

            /* copy points to 'add' */
            for (i = 0; i < in; i++){
                  add[i] = *pnts;
                  pnts += 3;
            }

            /* inverse forward differencing */
            for (i = 0; i < in2; i++){
                  for (j = in2; j > i; j--){
                        add[j] -= add[j - 1];
                  }
            }

            pnts = _pnts;
            for (i = out; i > 0; i--){
                  *pnts = (float)(add[0]);
                  pnts += 3;
                  for (j = 0; j < in2; j++){
                        add[j] += add[j+1];
                  }
            }

            _pnts++;
      }

      MEM_freeN(add);
}


void calcknots(float *knots, short aantal, short order, short type)
/* knots: number of pnts NOT corrected for cyclic */
/* type;     0: uniform, 1: endpoints, 2: bezier */
{
      float k;
      int a, t;

        t = aantal+order;
      if(type==0) {

            for(a=0;a<t;a++) {
                  knots[a]= (float)a;
            }
      }
      else if(type==1) {
            k= 0.0;
            for(a=1;a<=t;a++) {
                  knots[a-1]= k;
                  if(a>=order && a<=aantal) k+= 1.0;
            }
      }
      else if(type==2) {
            if(order==4) {
                  k= 0.34;
                  for(a=0;a<t;a++) {
                        knots[a]= (float)floor(k);
                        k+= (1.0/3.0);
                  }
            }
            else if(order==3) {
                  k= 0.6;
                  for(a=0;a<t;a++) {
                        if(a>=order && a<=aantal) k+= (0.5);
                        knots[a]= (float)floor(k);
                  }
            }
      }
}

void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
{
      int a, b, order2, c;

      if(knots==0) return;
        order2=order-1;

      /* do first long rows (order -1), remove identical knots at endpoints */
      if(order>2) {
            b= pnts+order2;
            for(a=1; a<order2; a++) {
                  if(knots[b]!= knots[b-a]) break;
            }
            if(a==order2) knots[pnts+order-2]+= 1.0;
      }

      b= order;
        c=pnts + order + order2;
      for(a=pnts+order2; a<c; a++) {
            knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
            b--;
      }
}


void makeknots(Nurb *nu, short uv, short type)  /* 0: uniform, 1: endpoints, 2: bezier */
{
      if( (nu->type & 7)==CU_NURBS ) {
            if(uv & 1) {
                  if(nu->knotsu) MEM_freeN(nu->knotsu);
                  if(nu->pntsu>1) {
                        nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
                        calcknots(nu->knotsu, nu->pntsu, nu->orderu, type);
                        if(nu->flagu & 1) makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
                  }
                  else nu->knotsu= 0;
            }
            if(uv & 2) {
                  if(nu->knotsv) MEM_freeN(nu->knotsv);
                  if(nu->pntsv>1) {
                        nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
                        calcknots(nu->knotsv, nu->pntsv, nu->orderv, type);
                        if(nu->flagv & 1) makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
                  }
                  else nu->knotsv= 0;
            }
      }
}

void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
      float d, e;
      int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;

      orderpluspnts= order+pnts;
        opp2 = orderpluspnts-1;

      /* this is for float inaccuracy */
      if(t < knots[0]) t= knots[0];
      else if(t > knots[opp2]) t= knots[opp2];

      /* this part is order '1' */
        o2 = order + 1;
      for(i=0;i<opp2;i++) {
            if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
                  basis[i]= 1.0;
                  i1= i-o2;
                  if(i1<0) i1= 0;
                  i2= i;
                  i++;
                  while(i<opp2) {
                        basis[i]= 0.0;
                        i++;
                  }
                  break;
            }
            else basis[i]= 0.0;
      }
      basis[i]= 0.0;
      
      /* this is order 2,3,... */
      for(j=2; j<=order; j++) {

            if(i2+j>= orderpluspnts) i2= opp2-j;

            for(i= i1; i<=i2; i++) {
                  if(basis[i]!=0.0)
                        d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
                  else
                        d= 0.0;

                  if(basis[i+1]!=0.0)
                        e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
                  else
                        e= 0.0;

                  basis[i]= d+e;
            }
      }

      *start= 1000;
      *end= 0;

      for(i=i1; i<=i2; i++) {
            if(basis[i]>0.0) {
                  *end= i;
                  if(*start==1000) *start= i;
            }
      }
}


void makeNurbfaces(Nurb *nu, float *data) 
/* data  has to be 3*4*resolu*resolv in size, and zero-ed */
{
      BPoint *bp;
      float *basisu, *basis, *basisv, *sum, *fp, *in;
      float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
      int i, j, iofs, jofs, cycl, len, resolu, resolv;
      int istart, iend, jsta, jen, *jstart, *jend, ratcomp;

      if(nu->knotsu==0 || nu->knotsv==0) return;
      if(nu->orderu>nu->pntsu) return;
      if(nu->orderv>nu->pntsv) return;
      if(data==0) return;

      /* allocate and initialize */
      len= nu->pntsu*nu->pntsv;
      if(len==0) return;
      sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");

      resolu= nu->resolu;
      resolv= nu->resolv;
      len= resolu*resolv;
      if(len==0) {
            MEM_freeN(sum);
            return;
      }

      bp= nu->bp;
      i= nu->pntsu*nu->pntsv;
      ratcomp=0;
      while(i--) {
            if(bp->vec[3]!=1.0) {
                  ratcomp= 1;
                  break;
            }
            bp++;
      }

      fp= nu->knotsu;
      ustart= fp[nu->orderu-1];
      if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
      else uend= fp[nu->pntsu];
      ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
      basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");

      fp= nu->knotsv;
      vstart= fp[nu->orderv-1];
      
      if(nu->flagv & 1) vend= fp[nu->pntsv+nu->orderv-1];
      else vend= fp[nu->pntsv];
      vstep= (vend-vstart)/(resolv-1+(nu->flagv & 1));
      len= KNOTSV(nu);
      basisv= (float *)MEM_mallocN(sizeof(float)*len*resolv, "makeNurbfaces3");
      jstart= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces4");
      jend= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces5");

      /* precalculation of basisv and jstart,jend */
      if(nu->flagv & 1) cycl= nu->orderv-1; 
      else cycl= 0;
      v= vstart;
      basis= basisv;
      while(resolv--) {
            basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
            basis+= KNOTSV(nu);
            v+= vstep;
      }

      if(nu->flagu & 1) cycl= nu->orderu-1; 
      else cycl= 0;
      in= data;
      u= ustart;
      while(resolu--) {

            basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);

            basis= basisv;
            resolv= nu->resolv;
            while(resolv--) {

                  jsta= jstart[resolv];
                  jen= jend[resolv];

                  /* calculate sum */
                  sumdiv= 0.0;
                  fp= sum;

                  for(j= jsta; j<=jen; j++) {

                        if(j>=nu->pntsv) jofs= (j - nu->pntsv);
                        else jofs= j;
                        bp= nu->bp+ nu->pntsu*jofs+istart-1;

                        for(i= istart; i<=iend; i++, fp++) {

                              if(i>= nu->pntsu) {
                                    iofs= i- nu->pntsu;
                                    bp= nu->bp+ nu->pntsu*jofs+iofs;
                              }
                              else bp++;

                              if(ratcomp) {
                                    *fp= basisu[i]*basis[j]*bp->vec[3];
                                    sumdiv+= *fp;
                              }
                              else *fp= basisu[i]*basis[j];
                        }
                  }
            
                  if(ratcomp) {
                        fp= sum;
                        for(j= jsta; j<=jen; j++) {
                              for(i= istart; i<=iend; i++, fp++) {
                                    *fp/= sumdiv;
                              }
                        }
                  }

                  /* one! (1.0) real point now */
                  fp= sum;
                  for(j= jsta; j<=jen; j++) {

                        if(j>=nu->pntsv) jofs= (j - nu->pntsv);
                        else jofs= j;
                        bp= nu->bp+ nu->pntsu*jofs+istart-1;

                        for(i= istart; i<=iend; i++, fp++) {

                              if(i>= nu->pntsu) {
                                    iofs= i- nu->pntsu;
                                    bp= nu->bp+ nu->pntsu*jofs+iofs;
                              }
                              else bp++;

                              if(*fp!=0.0) {
                                    in[0]+= (*fp) * bp->vec[0];
                                    in[1]+= (*fp) * bp->vec[1];
                                    in[2]+= (*fp) * bp->vec[2];
                              }
                        }
                  }

                  in+=3;
                  basis+= KNOTSV(nu);
            }
            u+= ustep;
      }

      /* free */
      MEM_freeN(sum);
      MEM_freeN(basisu);
      MEM_freeN(basisv);
      MEM_freeN(jstart);
      MEM_freeN(jend);
}


void makeNurbcurve_forw(Nurb *nu, float *data)
/* *data: has to be 3*4*pntsu*resolu in size and zero-ed */
{
      BPoint *bp;
      float *basisu, *sum, *fp,  *in;
      float u, ustart, uend, ustep, sumdiv;
      int i, j, k, len, resolu, istart, iend;
      int wanted, org;

      if(nu->knotsu==0) return;
      if(data==0) return;

      /* allocate and init */
      len= nu->pntsu;
      if(len==0) return;
      sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");

      resolu= nu->resolu*nu->pntsu;
      if(resolu==0) {
            MEM_freeN(sum);
            return;
      }

      fp= nu->knotsu;
      ustart= fp[nu->orderu-1];
      uend= fp[nu->pntsu];
      ustep= (uend-ustart)/(resolu-1);
      basisu= (float *)MEM_mallocN(sizeof(float)*(nu->orderu+nu->pntsu), "makeNurbcurve3");

      in= data;
      u= ustart;
      for (k = nu->orderu - 1; k < nu->pntsu; k++){

            wanted = (int)((nu->knotsu[k+1] - nu->knotsu[k]) / ustep);
            org = 4;    /* equal to order */
            if (org > wanted) org = wanted;

            for (j = org; j > 0; j--){

                  basisNurb(u, nu->orderu, nu->pntsu, nu->knotsu, basisu, &istart, &iend);
                  /* calc sum */
                  sumdiv= 0.0;
                  fp= sum;
                  for(i= istart; i<=iend; i++, fp++) {
                        /* do the rational component */
                        *fp= basisu[i];
                        sumdiv+= *fp;
                  }
                  if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
                        /* is this normalizing needed? */
                        fp= sum;
                        for(i= istart; i<=iend; i++, fp++) {
                              *fp/= sumdiv;
                        }
                  }

                  /* one! (1.0) real point */
                  fp= sum;
                  bp= nu->bp+ istart;
                  for(i= istart; i<=iend; i++, bp++, fp++) {

                        if(*fp!=0.0) {
                              in[0]+= (*fp) * bp->vec[0];
                              in[1]+= (*fp) * bp->vec[1];
                              in[2]+= (*fp) * bp->vec[2];
                        }
                  }

                  in+=3;

                  u+= ustep;
            }

            if (wanted > org){
                  extend_spline(in - 3 * org, org, wanted);
                  in += 3 * (wanted - org);
                  u += ustep * (wanted - org);
            }
      }

      /* free */
      MEM_freeN(sum);
      MEM_freeN(basisu);
}


void makeNurbcurve(Nurb *nu, float *data, int dim)
/* data has to be dim*4*pntsu*resolu in size and zero-ed */
{
      BPoint *bp;
      float u, ustart, uend, ustep, sumdiv;
      float *basisu, *sum, *fp,  *in;
      int i, len, resolu, istart, iend, cycl;

      if(nu->knotsu==0) return;
      if(nu->orderu>nu->pntsu) return;
      if(data==0) return;

      /* allocate and initialize */
      len= nu->pntsu;
      if(len==0) return;
      sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");

      resolu= nu->resolu*nu->pntsu;
      if(resolu==0) {
            MEM_freeN(sum);
            return;
      }

      fp= nu->knotsu;
      ustart= fp[nu->orderu-1];
      if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
      else uend= fp[nu->pntsu];
      ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
      basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");

      if(nu->flagu & 1) cycl= nu->orderu-1; 
      else cycl= 0;

      in= data;
      u= ustart;
      while(resolu--) {

            basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
            /* calc sum */
            sumdiv= 0.0;
            fp= sum;
            bp= nu->bp+ istart-1;
            for(i= istart; i<=iend; i++, fp++) {

                  if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
                  else bp++;

                  *fp= basisu[i]*bp->vec[3];
                  sumdiv+= *fp;
            }
            if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
                  /* is normalizing needed? */
                  fp= sum;
                  for(i= istart; i<=iend; i++, fp++) {
                        *fp/= sumdiv;
                  }
            }

            /* one! (1.0) real point */
            fp= sum;
            bp= nu->bp+ istart-1;
            for(i= istart; i<=iend; i++, fp++) {

                  if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
                  else bp++;

                  if(*fp!=0.0) {
                        
                        in[0]+= (*fp) * bp->vec[0];
                        in[1]+= (*fp) * bp->vec[1];
                        if(dim>=3) {
                              in[2]+= (*fp) * bp->vec[2];
                              if(dim==4) in[3]+= (*fp) * bp->alfa;
                        }
                  }
            }

            in+= dim;

            u+= ustep;
      }

      /* free */
      MEM_freeN(sum);
      MEM_freeN(basisu);
}

void maakbez(float q0, float q1, float q2, float q3, float *p, int it)
{
      float rt0,rt1,rt2,rt3,f;
      int a;

      f= (float)it;
      rt0= q0;
      rt1= 3.0f*(q1-q0)/f;
      f*= f;
      rt2= 3.0f*(q0-2.0f*q1+q2)/f;
      f*= it;
      rt3= (q3-q0+3.0f*(q1-q2))/f;
      
      q0= rt0;
      q1= rt1+rt2+rt3;
      q2= 2*rt2+6*rt3;
      q3= 6*rt3;
  
      for(a=0; a<=it; a++) {
            *p= q0;
            p+= 3;
            q0+= q1;
            q1+= q2;
            q2+= q3;
      }
}     

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

void make_orco_surf(Curve *cu)
{
      Nurb *nu;
      int a, b, tot=0;
      int sizeu, sizev;// ###
      float *data;


      /* first calculate the size of the datablock */
      nu= cu->nurb.first;
      while(nu) {
#ifdef STRUBI
/* this is a bad hack: as we want to avoid the seam in a cyclic nurbs
texture wrapping, reserve extra orco data space to save these extra needed
vertex based UV coordinates for the meridian vertices.
Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
the renderface/vert construction.

See also blenderWorldManipulation.c: init_render_surf()

*/

            sizeu = nu->resolu; sizev = nu->resolv;
            if (nu->flagu & CU_CYCLIC) sizeu++;
            if (nu->flagv & CU_CYCLIC) sizev++;
            if(nu->pntsv>1) tot+= sizeu * sizev;
#else
            if(nu->pntsv>1) tot+= nu->resolu*nu->resolv;
#endif
            nu= nu->next;
      }
                        /* makeNurbfaces wants zeros */
      data= cu->orco= MEM_callocN(3*sizeof(float)*tot, "make_orco");

      nu= cu->nurb.first;
      while(nu) {
            if(nu->pntsv>1) {
                  sizeu = nu->resolu;
                  sizev = nu->resolv;
#ifdef STRUBI
                  if (nu->flagu & CU_CYCLIC) sizeu++;
                  if (nu->flagv & CU_CYCLIC) sizev++;
#endif
                  
                  if(cu->flag & CU_UV_ORCO) {
                        for(b=0; b< sizeu; b++) {
                              for(a=0; a< sizev; a++) {
                              
                                    if(sizev <2) data[0]= 0.0f;
                                    else data[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
                                    
                                    if(sizeu <2) data[1]= 0.0f;
                                    else data[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
                                    
                                    data[2]= 0.0;
            
                                    data+= 3;
                              }
                        }
                  }
                  else {
                        makeNurbfaces(nu, data);
#ifdef STRUBI 
                        for(b=0; b< nu->resolu; b++) {
                              for(a=0; a< nu->resolv; a++) {
                                    data = cu->orco + 3 * (b * nu->resolv + a);
                                    data[0]= (data[0]-cu->loc[0])/cu->size[0];
                                    data[1]= (data[1]-cu->loc[1])/cu->size[1];
                                    data[2]= (data[2]-cu->loc[2])/cu->size[2];
                              }
                        }
                        copyintoExtendedArray(cu->orco, nu->resolv, nu->resolu, cu->orco, sizev, sizeu);
                        /* copy U/V-cyclic orco's */
                        if (nu->flagv & CU_CYCLIC) {
                              b = sizeu - 1;    
                              for(a=0; a< sizev; a++) {
                                    data = cu->orco + 3 * (b * sizev + a);
                                    VECCOPY(data, cu->orco + 3*a);
                              }
                        }     
                        if (nu->flagu & CU_CYCLIC) {
                              a = sizev - 1;    
                              for(b=0; b< sizeu; b++) {
                                    data = cu->orco + 3 * (b * sizev + a);
                                    VECCOPY(data, cu->orco + 3 * b*sizev);
                              }
                        }     

#else
                        tot= sizeu * sizev;
                        while(tot--) {
                              data[0]= (data[0]-cu->loc[0])/cu->size[0];
                              data[1]= (data[1]-cu->loc[1])/cu->size[1];
                              data[2]= (data[2]-cu->loc[2])/cu->size[2];
      
                              data+= 3;
                        }
#endif
                  }
            }
            nu= nu->next;
      }
      /* loadkeypostype(22, base, base); */

}



/* ***************** BEVEL ****************** */

void makebevelcurve(Object *ob, ListBase *disp)
{
      DispList *dl, *dlnew;
      Curve *bevcu, *cu;
      float *fp, facx, facy, hoek, dhoek;
      int nr, a;

      cu= ob->data;

      if(cu->bevobj && cu->bevobj!=ob) {
            if(cu->bevobj->type==OB_CURVE) {
                  bevcu= cu->bevobj->data;
                  if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
                        facx= cu->bevobj->size[0];
                        facy= cu->bevobj->size[1];

                        dl= bevcu->disp.first;
                        if(dl==0) {
                              makeDispList(cu->bevobj);
                              dl= bevcu->disp.first;
                        }
                        while(dl) {
                              if ELEM(dl->type, DL_POLY, DL_SEGM) {
                                    dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");                            
                                    *dlnew= *dl;
                                    dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
                                    memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
                                    
                                    if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
                                    
                                    BLI_addtail(disp, dlnew);
                                    fp= dlnew->verts;
                                    nr= dlnew->parts*dlnew->nr;
                                    while(nr--) {
                                          fp[2]= fp[1]*facy;
                                          fp[1]= -fp[0]*facx;
                                          fp[0]= 0.0;
                                          fp+= 3;
                                    }
                              }
                              dl= dl->next;
                        }
                  }
            }
      }
      else if(cu->ext2==0.0) {
            dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
            dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
            BLI_addtail(disp, dl);
            dl->type= DL_SEGM;
            dl->parts= 1;
            dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
            dl->nr= 2;
            
            fp= dl->verts;
            fp[0]= fp[1]= 0.0;
            fp[2]= -cu->ext1;
            fp[3]= fp[4]= 0.0;
            fp[5]= cu->ext1;
      }
      else {
            nr= 4+2*cu->bevresol;
            
            /* bevel now in three parts, for proper vertex normals */
            /* part 1 */
            nr= 2+ cu->bevresol;
            
            dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
            dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
            BLI_addtail(disp, dl);
            dl->type= DL_SEGM;
            dl->parts= 1;
            dl->flag= DL_BACK_CURVE;
            dl->nr= nr;

            /* half a circle */
            fp= dl->verts;
            hoek= -0.5*M_PI;
            dhoek= (0.5*M_PI/(nr-1));
            
            for(a=0; a<nr; a++) {
                  fp[0]= 0.0;
                  fp[1]= (float)(cos(hoek)*(cu->ext2));
                  fp[2]= (float)(sin(hoek)*(cu->ext2)) - cu->ext1;
                  hoek+= dhoek;
                  fp+= 3;
            }
            
            /* part 2, sidefaces */
            if(cu->ext1!=0.0) {
                  nr= 2;
                  
                  dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
                  dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
                  BLI_addtail(disp, dl);
                  dl->type= DL_SEGM;
                  dl->parts= 1;
                  dl->nr= nr;
                  
                  fp= dl->verts;
                  fp[1]= cu->ext2;
                  fp[2]= -cu->ext1;
                  fp[4]= cu->ext2;
                  fp[5]= cu->ext1;
            }
            
            /* part 3 */
            nr= 2+ cu->bevresol;
            
            dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
            dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
            BLI_addtail(disp, dl);
            dl->type= DL_SEGM;
            dl->flag= DL_FRONT_CURVE;
            dl->parts= 1;
            dl->nr= nr;
            
            /* half a circle */
            fp= dl->verts;
            hoek= 0.0;
            dhoek= (0.5*M_PI/(nr-1));
            
            for(a=0; a<nr; a++) {
                  fp[0]= 0.0;
                  fp[1]= (float)(cos(hoek)*(cu->ext2));
                  fp[2]= (float)(sin(hoek)*(cu->ext2)) + cu->ext1;
                  hoek+= dhoek;
                  fp+= 3;
            }
      }

}

int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
{
      /* return:
            -1: colliniar
             0: no intersection of segments
             1: exact intersection of segments
             2: cross-intersection of segments
      */
      float deler;

      deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
      if(deler==0.0) return -1;

      *labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
      *labda= -(*labda/deler);

      deler= v3[coy]-v4[coy];
      if(deler==0) {
            deler=v3[cox]-v4[cox];
            *mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
      } else {
            *mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
      }
      vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
      vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];

      if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
            if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
            return 2;
      }
      return 0;
}


short bevelinside(BevList *bl1,BevList *bl2)
{
      /* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
      /* returns '1' if correct hole  */
      BevPoint *bevp, *prevbevp;
      float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
      int nr, links=0,rechts=0,mode;

      /* take first vertex of possible hole */

      bevp= (BevPoint *)(bl2+1);
      hvec1[0]= bevp->x; 
      hvec1[1]= bevp->y; 
      hvec1[2]= 0.0;
      VECCOPY(hvec2,hvec1);
      hvec2[0]+=1000;

      /* test it with all edges of potential surounding poly */
      /* count number of transitions left-right  */

      bevp= (BevPoint *)(bl1+1);
      nr= bl1->nr;
      prevbevp= bevp+(nr-1);

      while(nr--) {
            min= prevbevp->y;
            max= bevp->y;
            if(max<min) {
                  min= max;
                  max= prevbevp->y;
            }
            if(min!=max) {
                  if(min<=hvec1[1] && max>=hvec1[1]) {
                        /* there's a transition, calc intersection point */
                        mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
                        /* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
                             only allow for one situation: we choose lab= 1.0
                         */
                        if(mode>=0 && lab!=0.0) {
                              if(vec[0]<hvec1[0]) links++;
                              else rechts++;
                        }
                  }
            }
            prevbevp= bevp;
            bevp++;
      }
      
      if( (links & 1) && (rechts & 1) ) return 1;
      return 0;
}


struct bevelsort {
      float left;
      BevList *bl;
      int dir;
};

int vergxcobev(const void *a1, const void *a2)
{
      const struct bevelsort *x1=a1,*x2=a2;

      if( x1->left > x2->left ) return 1;
      else if( x1->left < x2->left) return -1;
      return 0;
}

/* this function cannot be replaced with atan2, but why? */

void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
      float t01, t02, x3, y3;

      t01= (float)sqrt(x1*x1+y1*y1);
      t02= (float)sqrt(x2*x2+y2*y2);
      if(t01==0.0) t01= 1.0;
      if(t02==0.0) t02= 1.0;

      x1/=t01; 
      y1/=t01;
      x2/=t02; 
      y2/=t02;

      t02= x1*x2+y1*y2;
      if(fabs(t02)>=1.0) t02= .5*M_PI;
      else t02= (saacos(t02))/2.0f;

      t02= (float)sin(t02);
      if(t02==0.0) t02= 1.0;

      x3= x1-x2;
      y3= y1-y2;
      if(x3==0 && y3==0) {
            x3= y1;
            y3= -x1;
      } else {
            t01= (float)sqrt(x3*x3+y3*y3);
            x3/=t01; 
            y3/=t01;
      }

      *sina= -y3/t02;
      *cosa= x3/t02;

}

void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a)
{
      BezTriple *pprev, *next, *last;
      float fac, dfac, t[4];
      int a;
      
      last= nu->bezt+(nu->pntsu-1);
      
      /* returns a point */
      if(prevbezt==nu->bezt) {
            if(nu->flagu & 1) pprev= last;
            else pprev= prevbezt;
      }
      else pprev= prevbezt-1;
      
      /* next point */
      if(bezt==last) {
            if(nu->flagu & 1) next= nu->bezt;
            else next= bezt;
      }
      else next= bezt+1;
      
      fac= 0.0;
      dfac= 1.0f/(float)nu->resolu;
      
      for(a=0; a<nu->resolu; a++, fac+= dfac) {
            
            set_four_ipo(fac, t, KEY_BSPLINE);
            
            data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
      }
}

void makeBevelList(Object *ob)
{
      /*
       - convert all curves to polys, with indication of resol and flags for double-vertices
       - possibly; do a smart vertice removal (in case Nurb)
       - separate in individual blicks with BoundBox
       - AutoHole detection
      */
      Curve *cu;
      Nurb *nu;
      BezTriple *bezt, *prevbezt;
      BPoint *bp;
      BevList *bl, *blnew, *blnext;
      BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
      float  *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3];
      struct bevelsort *sortdata, *sd, *sd1;
      int a, b, len, nr, poly;

      /* this function needs an object, because of tflag and upflag */
      cu= ob->data;

      /* STEP 1: MAKE POLYS  */

      BLI_freelistN(&(cu->bev));
      if(ob==G.obedit) nu= editNurb.first;
      else nu= cu->nurb.first;
      
      while(nu) {
            if(nu->pntsu>1) {
            
                  if((nu->type & 7)==CU_POLY) {
      
                        len= nu->pntsu;
                        bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
                        BLI_addtail(&(cu->bev), bl);
      
                        if(nu->flagu & 1) bl->poly= 0;
                        else bl->poly= -1;
                        bl->nr= len;
                        bl->flag= 0;
                        bevp= (BevPoint *)(bl+1);
                        bp= nu->bp;
      
                        while(len--) {
                              bevp->x= bp->vec[0];
                              bevp->y= bp->vec[1];
                              bevp->z= bp->vec[2];
                              bevp->alfa= bp->alfa;
                              bevp->f1= 1;
                              bevp++;
                              bp++;
                        }
                  }
                  else if((nu->type & 7)==CU_BEZIER) {
      
                        len= nu->resolu*(nu->pntsu+ (nu->flagu & 1) -1)+1;    /* in case last point is not cyclic */
                        bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
                        BLI_addtail(&(cu->bev), bl);
      
                        if(nu->flagu & 1) bl->poly= 0;
                        else bl->poly= -1;
                        bevp= (BevPoint *)(bl+1);
      
                        a= nu->pntsu-1;
                        bezt= nu->bezt;
                        if(nu->flagu & 1) {
                              a++;
                              prevbezt= nu->bezt+(nu->pntsu-1);
                        }
                        else {
                              prevbezt= bezt;
                              bezt++;
                        }
                        
                        data= MEM_mallocN(3*sizeof(float)*(nu->resolu+1), "makeBevelList2");
                        data_a= MEM_callocN(sizeof(float)*(nu->resolu+1), "data_a");
                        
                        while(a--) {
                              if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
      
                                    bevp->x= prevbezt->vec[1][0];
                                    bevp->y= prevbezt->vec[1][1];
                                    bevp->z= prevbezt->vec[1][2];
                                    bevp->alfa= prevbezt->alfa;
                                    bevp->f1= 1;
                                    bevp->f2= 0;
                                    bevp++;
                                    bl->nr++;
                                    bl->flag= 1;
                              }
                              else {
                                    v1= prevbezt->vec[1];
                                    v2= bezt->vec[0];
                                    
                                    /* always do all three, to prevent data hanging around */
                                    maakbez(v1[0], v1[3], v2[0], v2[3], data, nu->resolu);
                                    maakbez(v1[1], v1[4], v2[1], v2[4], data+1, nu->resolu);
                                    maakbez(v1[2], v1[5], v2[2], v2[5], data+2, nu->resolu);
                                    
                                    if((nu->type & CU_2D)==0) {
                                          if(cu->flag & CU_3D) {
                                                alfa_bezpart(prevbezt, bezt, nu, data_a);
                                          }
                                    }
                                    
                                    
                                    /* indicate with handlecodes double points */
                                    if(prevbezt->h1==prevbezt->h2) {
                                          if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
                                    }
                                    else {
                                          if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
                                          else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1;
                                    }
                                    
                                    v1= data;
                                    v2= data_a;
                                    nr= nu->resolu;
                                    
                                    while(nr--) {
                                          bevp->x= v1[0]; 
                                          bevp->y= v1[1];
                                          bevp->z= v1[2];
                                          bevp->alfa= v2[0];
                                          bevp++;
                                          v1+=3;
                                          v2++;
                                    }
                                    bl->nr+= nu->resolu;
      
                              }
                              prevbezt= bezt;
                              bezt++;
                        }
                        
                        MEM_freeN(data);
                        MEM_freeN(data_a);
                        
                        if((nu->flagu & 1)==0) {          /* not cyclic: endpoint */
                              bevp->x= prevbezt->vec[1][0];
                              bevp->y= prevbezt->vec[1][1];
                              bevp->z= prevbezt->vec[1][2];
                              bl->nr++;
                        }
      
                  }
                  else if((nu->type & 7)==CU_NURBS) {
                        if(nu->pntsv==1) {
                              len= nu->resolu*nu->pntsu;
                              bl= MEM_mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
                              BLI_addtail(&(cu->bev), bl);
                              bl->nr= len;
                              bl->flag= 0;
                              if(nu->flagu & 1) bl->poly= 0;
                              else bl->poly= -1;
                              bevp= (BevPoint *)(bl+1);
      
                              data= MEM_callocN(4*sizeof(float)*len, "makeBevelList4");    /* has to be zero-ed */
                              makeNurbcurve(nu, data, 4);
                              
                              v1= data;
                              while(len--) {
                                    bevp->x= v1[0]; 
                                    bevp->y= v1[1];
                                    bevp->z= v1[2];
                                    bevp->alfa= v1[3];
                                    
                                    bevp->f1= bevp->f2= 0;
                                    bevp++;
                                    v1+=4;
                              }
                              MEM_freeN(data);
                        }
                  }
            }
            nu= nu->next;
      }

      /* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
      bl= cu->bev.first;
      while(bl) {
            nr= bl->nr;
            bevp1= (BevPoint *)(bl+1);
            bevp0= bevp1+(nr-1);
            nr--;
            while(nr--) {
                  if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
                        if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
                              if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
                                    bevp0->f2= 1;
                                    bl->flag++;
                              }
                        }
                  }
                  bevp0= bevp1;
                  bevp1++;
            }
            bl= bl->next;
      }
      bl= cu->bev.first;
      while(bl) {
            blnext= bl->next;
            if(bl->flag) {
                  nr= bl->nr- bl->flag+1; /* +1 because vectorbezier sets flag too */
                  blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList");
                  memcpy(blnew, bl, sizeof(BevList));
                  blnew->nr= 0;
                  BLI_remlink(&(cu->bev), bl);
                  BLI_insertlinkbefore(&(cu->bev),blnext,blnew);  /* to make sure bevlijst is tuned with nurblist */
                  bevp0= (BevPoint *)(bl+1);
                  bevp1= (BevPoint *)(blnew+1);
                  nr= bl->nr;
                  while(nr--) {
                        if(bevp0->f2==0) {
                              memcpy(bevp1, bevp0, sizeof(BevPoint));
                              bevp1++;
                              blnew->nr++;
                        }
                        bevp0++;
                  }
                  MEM_freeN(bl);
                  blnew->flag= 0;
            }
            bl= blnext;
      }

      /* STEP 3: COUNT POLYS TELLEN AND AUTOHOLE */
      bl= cu->bev.first;
      poly= 0;
      while(bl) {
            if(bl->poly>=0) {
                  poly++;
                  bl->poly= poly;
                  bl->gat= 0; /* 'gat' is dutch for hole */
            }
            bl= bl->next;
      }
      

      /* find extreme left points, also test (turning) direction */
      if(poly>0) {
            sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
            bl= cu->bev.first;
            while(bl) {
                  if(bl->poly>0) {

                        min= 300000.0;
                        bevp= (BevPoint *)(bl+1);
                        nr= bl->nr;
                        while(nr--) {
                              if(min>bevp->x) {
                                    min= bevp->x;
                                    bevp1= bevp;
                              }
                              bevp++;
                        }
                        sd->bl= bl;
                        sd->left= min;

                        bevp= (BevPoint *)(bl+1);
                        if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
                        else bevp0= bevp1-1;
                        bevp= bevp+ (bl->nr-1);
                        if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
                        else bevp2= bevp1+1;

                        inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
                            +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);

                        if(inp>0.0) sd->dir= 1;
                        else sd->dir= 0;

                        sd++;
                  }

                  bl= bl->next;
            }
            qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);

            sd= sortdata+1;
            for(a=1; a<poly; a++, sd++) {
                  bl= sd->bl;     /* is bl a hole? */
                  sd1= sortdata+ (a-1);
                  for(b=a-1; b>=0; b--, sd1--) {      /* all polys to the left */
                        if(bevelinside(sd1->bl, bl)) {
                              bl->gat= 1- sd1->bl->gat;
                              break;
                        }
                  }
            }

            /* turning direction */
            if((cu->flag & CU_3D)==0) {
                  sd= sortdata;
                  for(a=0; a<poly; a++, sd++) {
                        if(sd->bl->gat==sd->dir) {
                              bl= sd->bl;
                              bevp1= (BevPoint *)(bl+1);
                              bevp2= bevp1+ (bl->nr-1);
                              nr= bl->nr/2;
                              while(nr--) {
                                    SWAP(BevPoint, *bevp1, *bevp2);
                                    bevp1++;
                                    bevp2--;
                              }
                        }
                  }
            }
            MEM_freeN(sortdata);
      }

      /* STEP 4: COSINES */
      bl= cu->bev.first;
      while(bl) {
      
            if(bl->nr==2) {   /* 2 pnt, treat separate */
                  bevp2= (BevPoint *)(bl+1);
                  bevp1= bevp2+1;

                  x1= bevp1->x- bevp2->x;
                  y1= bevp1->y- bevp2->y;

                  calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
                  bevp2->sina= bevp1->sina;
                  bevp2->cosa= bevp1->cosa;

                  if(cu->flag & CU_3D) {  /* 3D */
                        float *quat, q[4];
                  
                        vec[0]= bevp1->x - bevp2->x;
                        vec[1]= bevp1->y - bevp2->y;
                        vec[2]= bevp1->z - bevp2->z;
                        
                        quat= vectoquat(vec, 5, 1);
                        
                        Normalise(vec);
                        q[0]= (float)cos(0.5*bevp1->alfa);
                        x1= (float)sin(0.5*bevp1->alfa);
                        q[1]= x1*vec[0];
                        q[2]= x1*vec[1];
                        q[3]= x1*vec[2];
                        QuatMul(quat, q, quat);
                        
                        QuatToMat3(quat, bevp1->mat);
                        Mat3CpyMat3(bevp2->mat, bevp1->mat);
                  }

            }
            else if(bl->nr>2) {
                  bevp2= (BevPoint *)(bl+1);
                  bevp1= bevp2+(bl->nr-1);
                  bevp0= bevp1-1;

            
                  nr= bl->nr;
      
                  while(nr--) {
      
                        if(cu->flag & CU_3D) {  /* 3D */
                              float *quat, q[4];
                        
                              vec[0]= bevp2->x - bevp0->x;
                              vec[1]= bevp2->y - bevp0->y;
                              vec[2]= bevp2->z - bevp0->z;
                              
                              Normalise(vec);

                              quat= vectoquat(vec, 5, 1);
                              
                              q[0]= (float)cos(0.5*bevp1->alfa);
                              x1= (float)sin(0.5*bevp1->alfa);
                              q[1]= x1*vec[0];
                              q[2]= x1*vec[1];
                              q[3]= x1*vec[2];
                              QuatMul(quat, q, quat);
                              
                              QuatToMat3(quat, bevp1->mat);
                        }
                        
                        x1= bevp1->x- bevp0->x;
                        x2= bevp1->x- bevp2->x;
                        y1= bevp1->y- bevp0->y;
                        y2= bevp1->y- bevp2->y;
                  
                        calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
                        
                        
                        bevp0= bevp1;
                        bevp1= bevp2;
                        bevp2++;
                  }
                  /* correct non-cyclic cases */
                  if(bl->poly== -1) {
                        if(bl->nr>2) {
                              bevp= (BevPoint *)(bl+1);
                              bevp1= bevp+1;
                              bevp->sina= bevp1->sina;
                              bevp->cosa= bevp1->cosa;
                              Mat3CpyMat3(bevp->mat, bevp1->mat);
                              bevp= (BevPoint *)(bl+1);
                              bevp+= (bl->nr-1);
                              bevp1= bevp-1;
                              bevp->sina= bevp1->sina;
                              bevp->cosa= bevp1->cosa;
                              Mat3CpyMat3(bevp->mat, bevp1->mat);
                        }
                  }
            }
            bl= bl->next;
      }
}

/* ****************** HANDLES ************** */

/*
 *   handlecodes:
 *          1: nothing,  1:auto,  2:vector,  3:aligned
 */


void calchandleNurb(BezTriple *bezt,BezTriple *prev, BezTriple *next, int mode)
{
      float *p1,*p2,*p3,pt[3];
      float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;

      if(bezt->h1==0 && bezt->h2==0) return;

      p2= bezt->vec[1];

      if(prev==0) {
            p3= next->vec[1];
            pt[0]= 2*p2[0]- p3[0];
            pt[1]= 2*p2[1]- p3[1];
            pt[2]= 2*p2[2]- p3[2];
            p1= pt;
      }
      else p1= prev->vec[1];

      if(next==0) {
            pt[0]= 2*p2[0]- p1[0];
            pt[1]= 2*p2[1]- p1[1];
            pt[2]= 2*p2[2]- p1[2];
            p3= pt;
      }
      else p3= next->vec[1];

      if(mode && bezt->h1==HD_AUTO && prev) {
            dx= p2[0] - (p1[0]+p1[3])/2.0f;
            dy= p2[1] - (p1[1]+p1[4])/2.0f;
            dz= p2[2] - (p1[2]+p1[5])/2.0f;
      }
      else {
            dx= p2[0]- p1[0];
            dy= p2[1]- p1[1];
            dz= p2[2]- p1[2];
      }
      len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
      
      if(mode && bezt->h2==HD_AUTO && next) {
            dx1= (p3[0]+p3[-3])/2.0f - p2[0];
            dy1= (p3[1]+p3[-2])/2.0f - p2[1];
            dz1= (p3[2]+p3[-1])/2.0f - p2[2];
      }
      else {
            dx1= p3[0]- p2[0];
            dy1= p3[1]- p2[1];
            dz1= p3[2]- p2[2];
      }
      len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);

      if(len1==0.0f) len1=1.0f;
      if(len2==0.0f) len2=1.0f;


      if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) {    /* auto */
            vx= dx1/len2 + dx/len1;
            vy= dy1/len2 + dy/len1;
            vz= dz1/len2 + dz/len1;
            len= 2.71f*(float)sqrt(vx*vx + vy*vy + vz*vz);
            if(len!=0.0f) {
            
                  if(len1>5.0f*len2) len1= 5.0f*len2; 
                  if(len2>5.0f*len1) len2= 5.0f*len1;
                  
                  if(bezt->h1==HD_AUTO) {
                        len1/=len;
                        *(p2-3)= *p2-vx*len1;
                        *(p2-2)= *(p2+1)-vy*len1;
                        *(p2-1)= *(p2+2)-vz*len1;
                  }
                  if(bezt->h2==HD_AUTO) {
                        len2/=len;
                        *(p2+3)= *p2+vx*len2;
                        *(p2+4)= *(p2+1)+vy*len2;
                        *(p2+5)= *(p2+2)+vz*len2;
                  }
            }
      }

      if(bezt->h1==HD_VECT) { /* vector */
            dx/=3.0; 
            dy/=3.0; 
            dz/=3.0;
            *(p2-3)= *p2-dx;
            *(p2-2)= *(p2+1)-dy;
            *(p2-1)= *(p2+2)-dz;
      }
      if(bezt->h2==HD_VECT) {
            dx1/=3.0; 
            dy1/=3.0; 
            dz1/=3.0;
            *(p2+3)= *p2+dx1;
            *(p2+4)= *(p2+1)+dy1;
            *(p2+5)= *(p2+2)+dz1;
      }

      len2= VecLenf(p2, p2+3);
      len1= VecLenf(p2, p2-3);
      if(len1==0.0) len1=1.0;
      if(len2==0.0) len2=1.0;
      if(bezt->f1 & 1) { /* order of calculation */
            if(bezt->h2==HD_ALIGN) {      /* aligned */
                  len= len2/len1;
                  p2[3]= p2[0]+len*(p2[0]-p2[-3]);
                  p2[4]= p2[1]+len*(p2[1]-p2[-2]);
                  p2[5]= p2[2]+len*(p2[2]-p2[-1]);
            }
            if(bezt->h1==HD_ALIGN) {
                  len= len1/len2;
                  p2[-3]= p2[0]+len*(p2[0]-p2[3]);
                  p2[-2]= p2[1]+len*(p2[1]-p2[4]);
                  p2[-1]= p2[2]+len*(p2[2]-p2[5]);
            }
      }
      else {
            if(bezt->h1==HD_ALIGN) {
                  len= len1/len2;
                  p2[-3]= p2[0]+len*(p2[0]-p2[3]);
                  p2[-2]= p2[1]+len*(p2[1]-p2[4]);
                  p2[-1]= p2[2]+len*(p2[2]-p2[5]);
            }
            if(bezt->h2==HD_ALIGN) {      /* aligned */
                  len= len2/len1;
                  p2[3]= p2[0]+len*(p2[0]-p2[-3]);
                  p2[4]= p2[1]+len*(p2[1]-p2[-2]);
                  p2[5]= p2[2]+len*(p2[2]-p2[-1]);
            }
      }
}

void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
{
      BezTriple *bezt, *prev, *next;
      short a;

      if((nu->type & 7)!=1) return;
      if(nu->pntsu<2) return;
      
      a= nu->pntsu;
      bezt= nu->bezt;
      if(nu->flagu & 1) prev= bezt+(a-1);
      else prev= 0;
      next= bezt+1;

      while(a--) {
            calchandleNurb(bezt, prev, next, 0);
            prev= bezt;
            if(a==1) {
                  if(nu->flagu & 1) next= nu->bezt;
                  else next= 0;
            }
            else next++;

            bezt++;
      }
}


void testhandlesNurb(Nurb *nu)
{
    /* use when something has changed with handles.
    it treats all BezTriples with the following rules:
    PHASE 1: do types have to be altered?
       Auto handles: become aligned when selection status is NOT(000 || 111)
       Vector handles: become 'nothing' when (one half selected AND other not)
    PHASE 2: recalculate handles
    */
      BezTriple *bezt;
      short flag, a;

      if((nu->type & 7)!=CU_BEZIER) return;

      bezt= nu->bezt;
      a= nu->pntsu;
      while(a--) {
            flag= 0;
            if(bezt->f1 & 1) flag++;
            if(bezt->f2 & 1) flag += 2;
            if(bezt->f3 & 1) flag += 4;

            if( !(flag==0 || flag==7) ) {
                  if(bezt->h1==HD_AUTO) {   /* auto */
                        bezt->h1= HD_ALIGN;
                  }
                  if(bezt->h2==HD_AUTO) {   /* auto */
                        bezt->h2= HD_ALIGN;
                  }

                  if(bezt->h1==HD_VECT) {   /* vector */
                        if(flag < 4) bezt->h1= 0;
                  }
                  if(bezt->h2==HD_VECT) {   /* vector */
                        if( flag > 3) bezt->h2= 0;
                  }
            }
            bezt++;
      }

      calchandlesNurb(nu);
}

void autocalchandlesNurb(Nurb *nu, int flag)
{
      /* checks handle coordinates and calculates type */
      
      BezTriple *bezt2, *bezt1, *bezt0;
      int i, align, leftsmall, rightsmall;

      if(nu==0 || nu->bezt==0) return;
      
      bezt2 = nu->bezt;
      bezt1 = bezt2 + (nu->pntsu-1);
      bezt0 = bezt1 - 1;
      i = nu->pntsu;

      while(i--) {
            
            align= leftsmall= rightsmall= 0;
            
            /* left handle: */
            if(flag==0 || (bezt1->f1 & flag) ) {
                  bezt1->h1= 0;
                  /* distance too short: vectorhandle */
                  if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
                        bezt1->h1= HD_VECT;
                        leftsmall= 1;
                  }
                  else {
                        /* aligned handle? */
                        if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
                              align= 1;
                              bezt1->h1= HD_ALIGN;
                        }
                        /* or vector handle? */
                        if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
                              bezt1->h1= HD_VECT;
                        
                  }
            }
            /* right handle: */
            if(flag==0 || (bezt1->f3 & flag) ) {
                  bezt1->h2= 0;
                  /* distance too short: vectorhandle */
                  if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
                        bezt1->h2= HD_VECT;
                        rightsmall= 1;
                  }
                  else {
                        /* aligned handle? */
                        if(align) bezt1->h2= HD_ALIGN;

                        /* or vector handle? */
                        if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
                              bezt1->h2= HD_VECT;
                        
                  }
            }
            if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
            if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
            
            /* undesired combination: */
            if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
            if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
            
            bezt0= bezt1;
            bezt1= bezt2;
            bezt2++;
      }

      calchandlesNurb(nu);
}

void autocalchandlesNurb_all(int flag)
{
      Nurb *nu;
      
      nu= editNurb.first;
      while(nu) {
            autocalchandlesNurb(nu, flag);
            nu= nu->next;
      }
}

void sethandlesNurb(short code)
{
      /* code==1: set autohandle */
      /* code==2: set vectorhandle */
      /* if code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
      Nurb *nu;
      BezTriple *bezt;
      short a, ok=0;

      if(code==1 || code==2) {
            nu= editNurb.first;
            while(nu) {
                  if( (nu->type & 7)==1) {
                        bezt= nu->bezt;
                        a= nu->pntsu;
                        while(a--) {
                              if(bezt->f1 || bezt->f3) {
                                    if(bezt->f1) bezt->h1= code;
                                    if(bezt->f3) bezt->h2= code;
                                    if(bezt->h1!=bezt->h2) {
                                          if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
                                          if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
                                    }
                              }
                              bezt++;
                        }
                        calchandlesNurb(nu);
                  }
                  nu= nu->next;
            }
      }
      else {
            /* there is 1 handle not FREE: FREE it all, else make ALIGNED  */
            
            nu= editNurb.first;
            while(nu) {
                  if( (nu->type & 7)==1) {
                        bezt= nu->bezt;
                        a= nu->pntsu;
                        while(a--) {
                              if(bezt->f1 && bezt->h1) ok= 1;
                              if(bezt->f3 && bezt->h2) ok= 1;
                              if(ok) break;
                              bezt++;
                        }
                  }
                  nu= nu->next;
            }
            if(ok) ok= HD_FREE;
            else ok= HD_ALIGN;
            
            nu= editNurb.first;
            while(nu) {
                  if( (nu->type & 7)==1) {
                        bezt= nu->bezt;
                        a= nu->pntsu;
                        while(a--) {
                              if(bezt->f1) bezt->h1= ok;
                              if(bezt->f3 ) bezt->h2= ok;
      
                              bezt++;
                        }
                        calchandlesNurb(nu);
                  }
                  nu= nu->next;
            }
      }
}

void swapdata(void *adr1, void *adr2, int len)
{

      if(len<=0) return;

      if(len<65) {
            char adr[64];

            memcpy(adr, adr1, len);
            memcpy(adr1, adr2, len);
            memcpy(adr2, adr, len);
      }
      else {
            char *adr;

            adr= (char *)malloc(len);
            memcpy(adr, adr1, len);
            memcpy(adr1, adr2, len);
            memcpy(adr2, adr, len);
            free(adr);
      }
}

void switchdirectionNurb(Nurb *nu)
{
      BezTriple *bezt1, *bezt2;
      BPoint *bp1, *bp2;
      float *fp1, *fp2, *tempf;
      int a, b;

      if(nu->pntsu==1 && nu->pntsv==1) return;

      if((nu->type & 7)==CU_BEZIER) {
            a= nu->pntsu;
            bezt1= nu->bezt;
            bezt2= bezt1+(a-1);
            if(a & 1) a+= 1;  /* if odd, also swap middle content */
            a/= 2;
            while(a>0) {
                  if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);

                  swapdata(bezt1->vec[0], bezt1->vec[2], 12);
                  if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);

                  SWAP(char, bezt1->h1, bezt1->h2);
                  SWAP(short, bezt1->f1, bezt1->f3);
                  
                  if(bezt1!=bezt2) {
                        SWAP(char, bezt2->h1, bezt2->h2);
                        SWAP(short, bezt2->f1, bezt2->f3);
                        bezt1->alfa= -bezt1->alfa;
                        bezt2->alfa= -bezt2->alfa;
                  }
                  a--;
                  bezt1++; 
                  bezt2--;
            }
      }
      else if(nu->pntsv==1) {
            a= nu->pntsu;
            bp1= nu->bp;
            bp2= bp1+(a-1);
            a/= 2;
            while(bp1!=bp2 && a>0) {
                  SWAP(BPoint, *bp1, *bp2);
                  a--;
                  bp1->alfa= -bp1->alfa;
                  bp2->alfa= -bp2->alfa;
                  bp1++; 
                  bp2--;
            }
            if((nu->type & 7)==CU_NURBS) {
                  /* inverse knots */
                  a= KNOTSU(nu);
                  fp1= nu->knotsu;
                  fp2= fp1+(a-1);
                  a/= 2;
                  while(fp1!=fp2 && a>0) {
                        SWAP(float, *fp1, *fp2);
                        a--;
                        fp1++; 
                        fp2--;
                  }
                  /* and make in increasing order again */
                  a= KNOTSU(nu);
                  fp1= nu->knotsu;
                  fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
                  while(a--) {
                        fp2[0]= fabs(fp1[1]-fp1[0]);
                        fp1++;
                        fp2++;
                  }
      
                  a= KNOTSU(nu)-1;
                  fp1= nu->knotsu;
                  fp2= tempf;
                  fp1[0]= 0.0;
                  fp1++;
                  while(a--) {
                        fp1[0]= fp1[-1]+fp2[0];
                        fp1++;
                        fp2++;
                  }
                  MEM_freeN(tempf);
            }
      }
      else {
            
            for(b=0; b<nu->pntsv; b++) {
            
                  bp1= nu->bp+b*nu->pntsu;
                  a= nu->pntsu;
                  bp2= bp1+(a-1);
                  a/= 2;
                  
                  while(bp1!=bp2 && a>0) {
                        SWAP(BPoint, *bp1, *bp2);
                        a--;
                        bp1++; 
                        bp2--;
                  }
            }
      }
}

Generated by  Doxygen 1.6.0   Back to index