Logo Search packages:      
Sourcecode: blender version File versions

Curve.c

/* 
 * $Id: Curve.c,v 1.21 2004/10/07 19:25:39 stiv Exp $
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * This is a new part of Blender.
 *
 * Contributor(s): Jacques Guignot, Stephen Swaney
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

#include <Python.h>
#include "Curve.h"
#include <stdio.h>

#include <BLI_arithb.h>
#include <BLI_blenlib.h>
#include <BKE_main.h>
#include <BKE_displist.h>
#include <BKE_global.h>
#include <BKE_object.h>
#include <BKE_library.h>
#include <BKE_curve.h>
#include <BKE_utildefines.h>
#include <MEM_guardedalloc.h> /* because we wil be mallocing memory */

#include "CurNurb.h"
#include "Material.h"
#include "gen_utils.h"


/*****************************************************************************/
/* The following string definitions are used for documentation strings.      */
/* In Python these will be written to the console when doing a               */
/*  Blender.Curve.__doc__                                                    */
/*****************************************************************************/

char M_Curve_doc[] = "The Blender Curve module\n\n\
This module provides access to **Curve Data** in Blender.\n\
Functions :\n\
      New(opt name) : creates a new curve object with the given name (optional)\n\
      Get(name) : retreives a curve  with the given name (mandatory)\n\
      get(name) : same as Get. Kept for compatibility reasons";
char M_Curve_New_doc[] = "";
char M_Curve_Get_doc[] = "xxx";



/*****************************************************************************/
/*  Python API function prototypes for the Curve module.                     */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args );
static PyObject *M_Curve_Get( PyObject * self, PyObject * args );


/*****************************************************************************/
/*  Python BPy_Curve instance methods declarations:                          */
/*****************************************************************************/
static PyObject *Curve_getName( BPy_Curve * self );
static PyObject *Curve_setName( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getPathLen( BPy_Curve * self );
static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getTotcol( BPy_Curve * self );
static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getMode( BPy_Curve * self );
static PyObject *Curve_setMode( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getBevresol( BPy_Curve * self );
static PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getResolu( BPy_Curve * self );
static PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getResolv( BPy_Curve * self );
static PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getWidth( BPy_Curve * self );
static PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getExt1( BPy_Curve * self );
static PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getExt2( BPy_Curve * self );
static PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getLoc( BPy_Curve * self );
static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getRot( BPy_Curve * self );
static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getSize( BPy_Curve * self );
static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getNumCurves( BPy_Curve * self );
static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args );
static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args );

static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args );
static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args );

static PyObject *Curve_getMaterials( BPy_Curve * self );

static PyObject *Curve_getIter( BPy_Curve * self );
static PyObject *Curve_iterNext( BPy_Curve * self );
static PyObject *Curve_update( BPy_Curve * self );
PyObject *Curve_getNurb( BPy_Curve * self, int n );
static int Curve_length( PyInstanceObject * inst );
void update_displists( void *data );

void makeDispList( Object * ob );
struct chartrans *text_to_curve( Object * ob, int mode );


/*****************************************************************************/
/*  Python method definitions for Blender.Curve module:             */
/*****************************************************************************/
struct PyMethodDef M_Curve_methods[] = {
      {"New", ( PyCFunction ) M_Curve_New, METH_VARARGS, M_Curve_New_doc},
      {"Get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc},
      {"get", M_Curve_Get, METH_VARARGS, M_Curve_Get_doc},
      {NULL, NULL, 0, NULL}
};


/*****************************************************************************/
/*  Python BPy_Curve instance methods table:                                 */
/*****************************************************************************/
static PyMethodDef BPy_Curve_methods[] = {
      {"getName", ( PyCFunction ) Curve_getName,
       METH_NOARGS, "() - Return Curve Data name"},
      {"setName", ( PyCFunction ) Curve_setName,
       METH_VARARGS, "() - Sets Curve Data name"},
      {"getPathLen", ( PyCFunction ) Curve_getPathLen,
       METH_NOARGS, "() - Return Curve path length"},
      {"setPathLen", ( PyCFunction ) Curve_setPathLen,
       METH_VARARGS, "(int) - Sets Curve path length"},
      {"getTotcol", ( PyCFunction ) Curve_getTotcol,
       METH_NOARGS, "() - Return the number of materials of the curve"},
      {"setTotcol", ( PyCFunction ) Curve_setTotcol,
       METH_VARARGS, "(int) - Sets the number of materials of the curve"},
      {"getFlag", ( PyCFunction ) Curve_getMode,
       METH_NOARGS, "() - Return flag (see the doc for semantic)"},
      {"setFlag", ( PyCFunction ) Curve_setMode,
       METH_VARARGS, "(int) - Sets flag (see the doc for semantic)"},
      {"getBevresol", ( PyCFunction ) Curve_getBevresol,
       METH_NOARGS, "() - Return bevel resolution"},
      {"setBevresol", ( PyCFunction ) Curve_setBevresol,
       METH_VARARGS, "(int) - Sets bevel resolution"},
      {"getResolu", ( PyCFunction ) Curve_getResolu,
       METH_NOARGS, "() - Return U resolution"},
      {"setResolu", ( PyCFunction ) Curve_setResolu,
       METH_VARARGS, "(int) - Sets U resolution"},
      {"getResolv", ( PyCFunction ) Curve_getResolv,
       METH_NOARGS, "() - Return V resolution"},
      {"setResolv", ( PyCFunction ) Curve_setResolv,
       METH_VARARGS, "(int) - Sets V resolution"},
      {"getWidth", ( PyCFunction ) Curve_getWidth,
       METH_NOARGS, "() - Return curve width"},
      {"setWidth", ( PyCFunction ) Curve_setWidth,
       METH_VARARGS, "(int) - Sets curve width"},
      {"getExt1", ( PyCFunction ) Curve_getExt1,
       METH_NOARGS, "() - Returns extent 1 of the bevel"},
      {"setExt1", ( PyCFunction ) Curve_setExt1,
       METH_VARARGS, "(int) - Sets  extent 1 of the bevel"},
      {"getExt2", ( PyCFunction ) Curve_getExt2,
       METH_NOARGS, "() - Return extent 2 of the bevel "},
      {"setExt2", ( PyCFunction ) Curve_setExt2,
       METH_VARARGS, "(int) - Sets extent 2 of the bevel "},
      {"getControlPoint", ( PyCFunction ) Curve_getControlPoint,
       METH_VARARGS, "(int numcurve,int numpoint) -\
Gets a control point.Depending upon the curve type, returne a list of 4 or 9 floats"},
      {"setControlPoint", ( PyCFunction ) Curve_setControlPoint,
       METH_VARARGS, "(int numcurve,int numpoint,float x,float y,float z,\
float w)(nurbs) or  (int numcurve,int numpoint,float x1,...,x9(bezier)\
Sets a control point "},
      {"getLoc", ( PyCFunction ) Curve_getLoc,
       METH_NOARGS, "() - Gets Location of the curve (a 3-tuple) "},
      {"setLoc", ( PyCFunction ) Curve_setLoc,
       METH_VARARGS, "(3-tuple) - Sets Location "},
      {"getRot", ( PyCFunction ) Curve_getRot,
       METH_NOARGS, "() - Gets curve rotation"},
      {"setRot", ( PyCFunction ) Curve_setRot,
       METH_VARARGS, "(3-tuple) - Sets curve rotation"},
      {"getSize", ( PyCFunction ) Curve_getSize,
       METH_NOARGS, "() - Gets curve size"},
      {"setSize", ( PyCFunction ) Curve_setSize,
       METH_VARARGS, "(3-tuple) - Sets curve size"},
      {"getNumCurves", ( PyCFunction ) Curve_getNumCurves,
       METH_NOARGS, "() - Gets number of curves in Curve"},
      {"isNurb", ( PyCFunction ) Curve_isNurb,
       METH_VARARGS,
       "(nothing or integer) - returns 1 if curve is type Nurb, O otherwise."},
      {"getNumPoints", ( PyCFunction ) Curve_getNumPoints,
       METH_VARARGS,
       "(nothing or integer) - returns the number of points of the specified curve"},
      {"appendPoint", ( PyCFunction ) Curve_appendPoint, METH_VARARGS,
       "( int numcurve, list of coordinates) - adds a new point to end of curve"},
      {"appendNurb", ( PyCFunction ) Curve_appendNurb, METH_VARARGS,
       "( new_nurb ) - adds a new nurb to the Curve"},
      {"update", ( PyCFunction ) Curve_update, METH_NOARGS,
       "( ) - updates display lists after changes to Curve"},
      {"getMaterials", ( PyCFunction ) Curve_getMaterials, METH_NOARGS,
       "() - returns list of materials assigned to this Curve"},
      {NULL, NULL, 0, NULL}
};


/*****************************************************************************/
/*  Python Curve_Type callback function prototypes:                         */
/*****************************************************************************/
static void CurveDeAlloc( BPy_Curve * msh );
/* static int CurvePrint (BPy_Curve *msh, FILE *fp, int flags); */
static int CurveSetAttr( BPy_Curve * msh, char *name, PyObject * v );
static PyObject *CurveGetAttr( BPy_Curve * msh, char *name );
static PyObject *CurveRepr( BPy_Curve * msh );

PyObject *Curve_CreatePyObject( struct Curve *curve );
int Curve_CheckPyObject( PyObject * py_obj );
struct Curve *Curve_FromPyObject( PyObject * py_obj );

static PySequenceMethods Curve_as_sequence = {
      ( inquiry ) Curve_length,     /* sq_length   */
      ( binaryfunc ) 0, /* sq_concat */
      ( intargfunc ) 0, /* sq_repeat */
      ( intargfunc ) Curve_getNurb, /* sq_item */
      ( intintargfunc ) 0,    /* sq_slice */
      0,                /* sq_ass_item */
      0,                /* sq_ass_slice */
      ( objobjproc ) 0, /* sq_contains */
      0,
      0
};


/*****************************************************************************/
/* Python Curve_Type structure definition:                                   */
/*****************************************************************************/
PyTypeObject Curve_Type = {
      PyObject_HEAD_INIT( NULL ) /* required macro */ 
      0,    /* ob_size */
      "Curve",          /* tp_name - for printing */
      sizeof( BPy_Curve ),    /* tp_basicsize - for allocation */
      0,                /* tp_itemsize  - for allocation */
      /* methods for standard operations */
      ( destructor ) CurveDeAlloc,  /* tp_dealloc */
      0,                /* tp_print */
      ( getattrfunc ) CurveGetAttr, /* tp_getattr */
      ( setattrfunc ) CurveSetAttr, /* tp_setattr */
      0,                /* tp_compare */
      ( reprfunc ) CurveRepr, /* tp_repr */
      /* methods for standard classes */
      0,                /* tp_as_number */
      &Curve_as_sequence,     /* tp_as_sequence */
      0,                /* tp_as_mapping */
      0,                /* tp_as_hash */
      0,                /* tp_call */
      0,                /* tp_str */
      0,                /* tp_getattro */
      0,                /* tp_setattro */
      0,                /* tp_as_buffer */
      /* Flags to define presence of optional/expaned features */
      Py_TPFLAGS_HAVE_ITER,   /* tp_flags */
      0,                /* tp_doc - documentation string */
      0,                /* tp_traverse */

      /* delete references to contained objects */
      0,                /* tp_clear */

      0,                /* tp_richcompare - rich comparisions */
      0,                /* tp_weaklistoffset - weak reference enabler */

      /* new release 2.2 stuff - Iterators */
      ( getiterfunc ) Curve_getIter,      /* tp_iter */
      ( iternextfunc ) Curve_iterNext,    /* tp_iternext */

      /*  Attribute descriptor and subclassing stuff */
      BPy_Curve_methods,      /* tp_methods */
      0,                /* tp_members */
      0,                /* tp_getset; */
      0,                /* tp_base; */
      0,                /* tp_dict; */
      0,                /* tp_descr_get; */
      0,                /* tp_descr_set; */
      0,                /* tp_dictoffset; */
      0,                /* tp_init; */
      0,                /* tp_alloc; */
      0,                /* tp_new; */
      0,                /* tp_free;  Low-level free-memory routine */
      0,                /* tp_is_gc */
      0,                /* tp_bases; */
      0,                /* tp_mro;  method resolution order */
      0,                /* tp_defined; */
      0,                /* tp_weakllst */
      0,
      0
};

/*****************************************************************************/
/* Function:              M_Curve_New                                       */
/* Python equivalent:     Blender.Curve.New                                 */
/*****************************************************************************/
static PyObject *M_Curve_New( PyObject * self, PyObject * args )
{
      char buf[24];
      char *name = NULL;
      BPy_Curve *pycurve;     /* for Curve Data object wrapper in Python */
      Curve *blcurve = 0;     /* for actual Curve Data we create in Blender */

      if( !PyArg_ParseTuple( args, "|s", &name ) )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_AttributeError,
                     "expected string argument or no argument" ) );

      blcurve = add_curve( OB_CURVE );    /* first create the Curve Data in Blender */

      if( blcurve == NULL )   /* bail out if add_curve() failed */
            return ( EXPP_ReturnPyObjError
                   ( PyExc_RuntimeError,
                     "couldn't create Curve Data in Blender" ) );

      /* return user count to zero because add_curve() inc'd it */
      blcurve->id.us = 0;
      /* create python wrapper obj */
      pycurve = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );

      if( pycurve == NULL )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_MemoryError,
                     "couldn't create Curve Data object" ) );

      pycurve->curve = blcurve;     /* link Python curve wrapper to Blender Curve */
      if( name ) {
            PyOS_snprintf( buf, sizeof( buf ), "%s", name );
            rename_id( &blcurve->id, buf );
      }

      return ( PyObject * ) pycurve;
}

/*****************************************************************************/
/* Function:              M_Curve_Get                                       */
/* Python equivalent:     Blender.Curve.Get                                 */
/*****************************************************************************/
static PyObject *M_Curve_Get( PyObject * self, PyObject * args )
{

      char *name = NULL;
      Curve *curv_iter;
      BPy_Curve *wanted_curv;

      if( !PyArg_ParseTuple( args, "|s", &name ) )    /* expects nothing or a string */
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected string argument" ) );
      if( name ) {            /*a name has been given */
            /* Use the name to search for the curve requested */
            wanted_curv = NULL;
            curv_iter = G.main->curve.first;

            while( ( curv_iter ) && ( wanted_curv == NULL ) ) {

                  if( strcmp( name, curv_iter->id.name + 2 ) == 0 ) {
                        wanted_curv = ( BPy_Curve * )
                              PyObject_NEW( BPy_Curve, &Curve_Type );
                        if( wanted_curv )
                              wanted_curv->curve = curv_iter;
                  }

                  curv_iter = curv_iter->id.next;
            }

            if( wanted_curv == NULL ) {   /* Requested curve doesn't exist */
                  char error_msg[64];
                  PyOS_snprintf( error_msg, sizeof( error_msg ),
                               "Curve \"%s\" not found", name );
                  return ( EXPP_ReturnPyObjError
                         ( PyExc_NameError, error_msg ) );
            }


            return ( PyObject * ) wanted_curv;
      } /* end  of if(name) */
      else {
            /* no name has been given; return a list of all curves by name.  */
            PyObject *curvlist;

            curv_iter = G.main->curve.first;
            curvlist = PyList_New( 0 );

            if( curvlist == NULL )
                  return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
                                          "couldn't create PyList" ) );

            while( curv_iter ) {
                  BPy_Curve *found_cur =
                        ( BPy_Curve * ) PyObject_NEW( BPy_Curve,
                                                &Curve_Type );
                  found_cur->curve = curv_iter;
                  PyList_Append( curvlist, ( PyObject * ) found_cur );

                  curv_iter = curv_iter->id.next;
            }

            return ( curvlist );
      }                 /* end of else */
}

/*****************************************************************************/
/* Function:              Curve_Init                                         */
/*****************************************************************************/
PyObject *Curve_Init( void )
{
      PyObject *submodule;

      Curve_Type.ob_type = &PyType_Type;

      submodule =
            Py_InitModule3( "Blender.Curve", M_Curve_methods,
                        M_Curve_doc );
      return ( submodule );
}

/*****************************************************************************/
/* Python BPy_Curve methods:                                                 */
/* gives access to                                                           */
/* name, pathlen totcol flag bevresol                                        */
/* resolu resolv width ext1 ext2                                             */
/* controlpoint loc rot size                                                 */
/* numpts                                                                    */
/*****************************************************************************/


static PyObject *Curve_getName( BPy_Curve * self )
{
      PyObject *attr = PyString_FromString( self->curve->id.name + 2 );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.name attribute" ) );
}

static PyObject *Curve_setName( BPy_Curve * self, PyObject * args )
{
      char *name;
      char buf[50];

      if( !PyArg_ParseTuple( args, "s", &( name ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected string argument" ) );
      PyOS_snprintf( buf, sizeof( buf ), "%s", name );
      rename_id( &self->curve->id, buf ); /* proper way in Blender */

      Py_INCREF( Py_None );
      return Py_None;
}

static PyObject *Curve_getPathLen( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->pathlen );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.pathlen attribute" ) );
}


static PyObject *Curve_setPathLen( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->pathlen ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


static PyObject *Curve_getTotcol( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->totcol );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.totcol attribute" ) );
}


static PyObject *Curve_setTotcol( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->totcol ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


static PyObject *Curve_getMode( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->flag );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.flag attribute" ) );
}


static PyObject *Curve_setMode( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->flag ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


static PyObject *Curve_getBevresol( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->bevresol );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.bevresol attribute" ) );
}


static PyObject *Curve_setBevresol( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->bevresol ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


static PyObject *Curve_getResolu( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolu );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.resolu attribute" ) );
}


static PyObject *Curve_setResolu( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->resolu ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}



static PyObject *Curve_getResolv( BPy_Curve * self )
{
      PyObject *attr = PyInt_FromLong( ( long ) self->curve->resolv );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.resolv attribute" ) );
}


static PyObject *Curve_setResolv( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "i", &( self->curve->resolv ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}



static PyObject *Curve_getWidth( BPy_Curve * self )
{
      PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->width );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.width attribute" ) );
}


static PyObject *Curve_setWidth( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "f", &( self->curve->width ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected float argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


static PyObject *Curve_getExt1( BPy_Curve * self )
{
      PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext1 );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.ext1 attribute" ) );
}


static PyObject *Curve_setExt1( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "f", &( self->curve->ext1 ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected float argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}



static PyObject *Curve_getExt2( BPy_Curve * self )
{
      PyObject *attr = PyFloat_FromDouble( ( double ) self->curve->ext2 );

      if( attr )
            return attr;

      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get Curve.ext2 attribute" ) );
}


static PyObject *Curve_setExt2( BPy_Curve * self, PyObject * args )
{

      if( !PyArg_ParseTuple( args, "f", &( self->curve->ext2 ) ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected float argument" ) );

      Py_INCREF( Py_None );
      return Py_None;
}


/*
static PyObject *Curve_setControlPoint(BPy_Curve *self, PyObject *args)
{
  Nurb*ptrnurb = self->curve->nurb.first;
  int numcourbe,numpoint,i,j;
  float x,y,z,w;
  float bez[9];
  if (!ptrnurb){ Py_INCREF(Py_None);return Py_None;}

  if (ptrnurb->bp)
    if (!PyArg_ParseTuple(args, "iiffff", &numcourbe,&numpoint,&x,&y,&z,&w))  
      return (EXPP_ReturnPyObjError (PyExc_AttributeError,
                                                "expected int int float float float float arguments"));
  if (ptrnurb->bezt)
    if (!PyArg_ParseTuple(args, "iifffffffff", &numcourbe,&numpoint,
                                    bez,bez+1,bez+2,bez+3,bez+4,bez+5,bez+6,bez+7,bez+8))  
      return (EXPP_ReturnPyObjError (PyExc_AttributeError,
                              "expected int int float float float float float float "
                              "float float float arguments"));

  for(i = 0;i< numcourbe;i++)
    ptrnurb=ptrnurb->next;
  if (ptrnurb->bp)
    {
      ptrnurb->bp[numpoint].vec[0] = x;
      ptrnurb->bp[numpoint].vec[1] = y;
      ptrnurb->bp[numpoint].vec[2] = z;
      ptrnurb->bp[numpoint].vec[3] = w;
    }
  if (ptrnurb->bezt)
    {
      for(i = 0;i<3;i++)
      for(j = 0;j<3;j++)
        ptrnurb->bezt[numpoint].vec[i][j] = bez[i*3+j];
    }
      
  Py_INCREF(Py_None);
  return Py_None;
}
*/


/*
 * Curve_setControlPoint
 * this function sets an EXISTING control point.
 * it does NOT add a new one.
 */

static PyObject *Curve_setControlPoint( BPy_Curve * self, PyObject * args )
{
      PyObject *listargs = 0;
      Nurb *ptrnurb = self->curve->nurb.first;
      int numcourbe, numpoint, i, j;

      if( !ptrnurb ) {
            Py_INCREF( Py_None );
            return Py_None;
      }

      if( ptrnurb->bp )
            if( !PyArg_ParseTuple
                ( args, "iiO", &numcourbe, &numpoint, &listargs ) )
                  return ( EXPP_ReturnPyObjError
                         ( PyExc_AttributeError,
                           "expected int int list arguments" ) );
      if( ptrnurb->bezt )
            if( !PyArg_ParseTuple
                ( args, "iiO", &numcourbe, &numpoint, &listargs ) )
                  return ( EXPP_ReturnPyObjError
                         ( PyExc_AttributeError,
                           "expected int int list arguments" ) );

      for( i = 0; i < numcourbe; i++ )
            ptrnurb = ptrnurb->next;

      if( ptrnurb->bp )
            for( i = 0; i < 4; i++ )
                  ptrnurb->bp[numpoint].vec[i] =
                        PyFloat_AsDouble( PyList_GetItem
                                      ( listargs, i ) );

      if( ptrnurb->bezt )
            for( i = 0; i < 3; i++ )
                  for( j = 0; j < 3; j++ )
                        ptrnurb->bezt[numpoint].vec[i][j] =
                              PyFloat_AsDouble( PyList_GetItem
                                            ( listargs,
                                              i * 3 + j ) );

      Py_INCREF( Py_None );
      return Py_None;
}

static PyObject *Curve_getControlPoint( BPy_Curve * self, PyObject * args )
{
      PyObject *liste = PyList_New( 0 );  /* return values */

      Nurb *ptrnurb;
      int i, j;
      /* input args: requested curve and point number on curve */
      int numcourbe, numpoint;

      if( !PyArg_ParseTuple( args, "ii", &numcourbe, &numpoint ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int int arguments" ) );
      if( ( numcourbe < 0 ) || ( numpoint < 0 ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    " arguments must be non-negative" ) );

      /* if no nurbs in this curve obj */
      if( !self->curve->nurb.first )
            return liste;

      /* walk the list of nurbs to find requested numcourbe */
      ptrnurb = self->curve->nurb.first;
      for( i = 0; i < numcourbe; i++ ) {
            ptrnurb = ptrnurb->next;
            if( !ptrnurb )    /* if zero, we ran just ran out of curves */
                  return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                          "curve index out of range" ) );
      }

      /* check numpoint param against pntsu */
      if( numpoint >= ptrnurb->pntsu )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "point index out of range" ) );

      if( ptrnurb->bp ) {     /* if we are a nurb curve, you get 4 values */
            for( i = 0; i < 4; i++ )
                  PyList_Append( liste,
                               PyFloat_FromDouble( ptrnurb->
                                             bp[numpoint].
                                             vec[i] ) );
      }

      if( ptrnurb->bezt ) {   /* if we are a bezier, you get 9 values */
            for( i = 0; i < 3; i++ )
                  for( j = 0; j < 3; j++ )
                        PyList_Append( liste,
                                     PyFloat_FromDouble( ptrnurb->
                                                   bezt
                                                   [numpoint].
                                                   vec[i]
                                                   [j] ) );
      }

      return liste;
}



static PyObject *Curve_getLoc( BPy_Curve * self )
{
      int i;
      PyObject *liste = PyList_New( 3 );
      for( i = 0; i < 3; i++ )
            PyList_SetItem( liste, i,
                        PyFloat_FromDouble( self->curve->loc[i] ) );
      return liste;
}

static PyObject *Curve_setLoc( BPy_Curve * self, PyObject * args )
{
      PyObject *listargs = 0;
      int i;
      if( !PyArg_ParseTuple( args, "O", &listargs ) )
            return EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected list argument" );
      if( !PyList_Check( listargs ) )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_TypeError, "expected a list" ) );
      for( i = 0; i < 3; i++ ) {
            PyObject *xx = PyList_GetItem( listargs, i );
            self->curve->loc[i] = PyFloat_AsDouble( xx );
      }
      Py_INCREF( Py_None );
      return Py_None;
}

static PyObject *Curve_getRot( BPy_Curve * self )
{

      int i;
      PyObject *liste = PyList_New( 3 );
      for( i = 0; i < 3; i++ )
            PyList_SetItem( liste, i,
                        PyFloat_FromDouble( self->curve->rot[i] ) );
      return liste;

}

static PyObject *Curve_setRot( BPy_Curve * self, PyObject * args )
{
      PyObject *listargs = 0;
      int i;
      if( !PyArg_ParseTuple( args, "O", &listargs ) )
            return EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected list argument" );
      if( !PyList_Check( listargs ) )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_TypeError, "expected a list" ) );
      for( i = 0; i < 3; i++ ) {
            PyObject *xx = PyList_GetItem( listargs, i );
            self->curve->rot[i] = PyFloat_AsDouble( xx );
      }
      Py_INCREF( Py_None );
      return Py_None;

}
static PyObject *Curve_getSize( BPy_Curve * self )
{
      int i;
      PyObject *liste = PyList_New( 3 );
      for( i = 0; i < 3; i++ )
            PyList_SetItem( liste, i,
                        PyFloat_FromDouble( self->curve->size[i] ) );
      return liste;

}

static PyObject *Curve_setSize( BPy_Curve * self, PyObject * args )
{
      PyObject *listargs = 0;
      int i;
      if( !PyArg_ParseTuple( args, "O", &listargs ) )
            return EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected list argument" );
      if( !PyList_Check( listargs ) )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_TypeError, "expected a list" ) );
      for( i = 0; i < 3; i++ ) {
            PyObject *xx = PyList_GetItem( listargs, i );
            self->curve->size[i] = PyFloat_AsDouble( xx );
      }
      Py_INCREF( Py_None );
      return Py_None;
}


/*
 * Count the number of splines in a Curve Object
 * int getNumCurves()
 */

static PyObject *Curve_getNumCurves( BPy_Curve * self )
{
      Nurb *ptrnurb;
      PyObject *ret_val;
      int num_curves = 0;     /* start with no splines */

      /* get curve */
      ptrnurb = self->curve->nurb.first;
      if( ptrnurb ) {         /* we have some nurbs in this curve */
            while( 1 ) {
                  ++num_curves;
                  ptrnurb = ptrnurb->next;
                  if( !ptrnurb )    /* no more curves */
                        break;
            }
      }

      ret_val = PyInt_FromLong( ( long ) num_curves );

      if( ret_val )
            return ret_val;

      /* oops! */
      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get number of curves" ) );
}


/*
 * count the number of points in a given spline
 * int getNumPoints( curve_num=0 )
 *
 */

static PyObject *Curve_getNumPoints( BPy_Curve * self, PyObject * args )
{
      Nurb *ptrnurb;
      PyObject *ret_val;
      int curve_num = 0;      /* default spline number */
      int i;

      /* parse input arg */
      if( !PyArg_ParseTuple( args, "|i", &curve_num ) )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );

      /* check arg - must be non-negative */
      if( curve_num < 0 )
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "argument must be non-negative" ) );


      /* walk the list of curves looking for our curve */
      ptrnurb = self->curve->nurb.first;
      if( !ptrnurb ) {  /* no splines in this Curve */
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "no splines in this Curve" ) );
      }

      for( i = 0; i < curve_num; i++ ) {
            ptrnurb = ptrnurb->next;
            if( !ptrnurb )    /* if zero, we ran just ran out of curves */
                  return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                          "curve index out of range" ) );
      }

      /* pntsu is the number of points in curve */
      ret_val = PyInt_FromLong( ( long ) ptrnurb->pntsu );

      if( ret_val )
            return ret_val;

      /* oops! */
      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get number of points for curve" ) );
}

/*
 * Test whether a given spline of a Curve is a nurb
 *  as opposed to a bezier
 * int isNurb( curve_num=0 )
 */

static PyObject *Curve_isNurb( BPy_Curve * self, PyObject * args )
{
      int curve_num = 0;      /* default value */
      int is_nurb;
      Nurb *ptrnurb;
      PyObject *ret_val;
      int i;

      /* parse and check input args */
      if( !PyArg_ParseTuple( args, "|i", &curve_num ) ) {
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "expected int argument" ) );
      }
      if( curve_num < 0 ) {
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "curve number must be non-negative" ) );
      }

      ptrnurb = self->curve->nurb.first;

      if( !ptrnurb )          /* no splines in this curve */
            return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                    "no splines in this Curve" ) );

      for( i = 0; i < curve_num; i++ ) {
            ptrnurb = ptrnurb->next;
            if( !ptrnurb )    /* if zero, we ran just ran out of curves */
                  return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
                                          "curve index out of range" ) );
      }

      /* right now, there are only two curve types, nurb and bezier. */
      is_nurb = ptrnurb->bp ? 1 : 0;

      ret_val = PyInt_FromLong( ( long ) is_nurb );
      if( ret_val )
            return ret_val;

      /* oops */
      return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
                              "couldn't get curve type" ) );
}


/*
 * Curve_appendPoint( numcurve, new_point )
 * append a new point to indicated spline
 */

static PyObject *Curve_appendPoint( BPy_Curve * self, PyObject * args )
{
      int i;
      int nurb_num;           /* index of curve we append to */
      PyObject *coord_args;   /* coords for new point */
      Nurb *nurb = self->curve->nurb.first;     /* first nurb in Curve */

/* fixme - need to malloc new Nurb */
      if( !nurb )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_AttributeError, "no nurbs in this Curve" ) );

      if( !PyArg_ParseTuple( args, "iO", &nurb_num, &coord_args ) )
            return ( EXPP_ReturnPyObjError
                   ( PyExc_AttributeError,
                     "expected int, coords as arguments" ) );

      /* 
         chase down the list of Nurbs looking for our curve.
       */
      for( i = 0; i < nurb_num; i++ ) {
            nurb = nurb->next;
            if( !nurb ) /* we ran off end of list */
                  return ( EXPP_ReturnPyObjError
                         ( PyExc_AttributeError,
                           "curve index out of range" ) );
      }

      return CurNurb_appendPointToNurb( nurb, coord_args );

}


static PyObject *Curve_appendNurb( BPy_Curve * self, PyObject * args )
{
      Nurb *nurb_ptr = self->curve->nurb.first;
      Nurb **pptr = ( Nurb ** ) & ( self->curve->nurb.first );
      Nurb *new_nurb;


      /* walk to end of nurblist */
      if( nurb_ptr ) {
            while( nurb_ptr->next ) {
                  nurb_ptr = nurb_ptr->next;
            }
            pptr = &nurb_ptr->next;
      }

      /* malloc new nurb */
      new_nurb = ( Nurb * ) MEM_callocN( sizeof( Nurb ), "appendNurb" );
      if( !new_nurb )
            return EXPP_ReturnPyObjError
                  ( PyExc_MemoryError, "unable to malloc Nurb" );

      if( CurNurb_appendPointToNurb( new_nurb, args ) ) {
            *pptr = new_nurb;
            new_nurb->resolu = 12;
            new_nurb->resolv = 12;

            if( new_nurb->bezt ) {  /* do setup for bezt */
                  new_nurb->type = CU_BEZIER;
                  new_nurb->bezt->h1 = HD_ALIGN;
                  new_nurb->bezt->h2 = HD_ALIGN;
                  new_nurb->bezt->f1 = 1;
                  new_nurb->bezt->f2 = 1;
                  new_nurb->bezt->f3 = 1;
                  /* calchandlesNurb( new_nurb ); */
            } else {    /* set up bp */
                  new_nurb->pntsv = 1;
                  new_nurb->type = CU_NURBS;
                  new_nurb->orderu = 4;
                  new_nurb->flagu = 0;
                  new_nurb->flagv = 0;
                  new_nurb->bp->f1 = 0;
                  new_nurb->knotsu = 0;
                  /*makenots( new_nurb, 1, new_nurb->flagu >> 1); */
            }

      } else {
            freeNurb( new_nurb );
            return NULL;      /* with PyErr already set */
      }

      return EXPP_incr_ret( Py_None );
}


/* 
 *   Curve_update( )
 *   method to update display list for a Curve.
 *   used. after messing with control points
 */

static PyObject *Curve_update( BPy_Curve * self )
{
/*    update_displists( ( void * ) self->curve ); */
      freedisplist( &self->curve->disp );

      Py_INCREF( Py_None );
      return Py_None;
}

/*
 * Curve_getMaterials
 *
 */

static PyObject *Curve_getMaterials( BPy_Curve * self )
{
      return ( EXPP_PyList_fromMaterialList( self->curve->mat,
                                     self->curve->totcol, 1 ) );

}



/*
 * Curve_getIter
 *
 * create an iterator for our Curve.
 * this iterator returns the Nurbs for this Curve.
 * the iter_pointer always points to the next available item or null
 */

static PyObject *Curve_getIter( BPy_Curve * self )
{
      self->iter_pointer = self->curve->nurb.first;

      Py_INCREF( self );
      return ( PyObject * ) self;

}


/*
 * Curve_iterNext
 *  get the next item.
 *  iter_pointer always points to the next available element
 *   or NULL if at the end of the list.
 */

static PyObject *Curve_iterNext( BPy_Curve * self )
{
      PyObject *po;           /* return value */
      Nurb *pnurb;

      if( self->iter_pointer ) {
            pnurb = self->iter_pointer;
            self->iter_pointer = pnurb->next;   /* advance iterator */
            po = CurNurb_CreatePyObject( pnurb );     /* make a bpy_nurb */

            return ( PyObject * ) po;
      }

      /* if iter_pointer was null, we are at end */
      return ( EXPP_ReturnPyObjError
             ( PyExc_StopIteration, "iterator at end" ) );
}



/* tp_sequence methods */

/*
 * Curve_length
 * returns the number of curves in a Curve
 * this is a tp_as_sequence method, not a regular instance method.
 */

static int Curve_length( PyInstanceObject * inst )
{
      if( Curve_CheckPyObject( ( PyObject * ) inst ) )
            return ( ( int ) PyInt_AsLong
                   ( Curve_getNumCurves( ( BPy_Curve * ) inst ) ) );

      return EXPP_ReturnIntError( PyExc_RuntimeError,
                            "arg is not a BPy_Curve" );

}



/*
 * Curve_getNurb
 * returns the Nth nurb in a Curve.
 * this is one of the tp_as_sequence methods, hence the int N argument.
 * it is called via the [] operator, not as a usual instance method.
 */

PyObject *Curve_getNurb( BPy_Curve * self, int n )
{
      PyObject *pyo;
      Nurb *pNurb;
      int i;

      /* bail if index < 0 */
      if( n < 0 )
            return ( EXPP_ReturnPyObjError( PyExc_IndexError,
                                    "index less than 0" ) );
      /* bail if no Nurbs in Curve */
      if( self->curve->nurb.first == 0 )
            return ( EXPP_ReturnPyObjError( PyExc_IndexError,
                                    "no Nurbs in this Curve" ) );
      /* set pointer to nth Nurb */
      for( pNurb = self->curve->nurb.first, i = 0;
           pNurb != 0 && i < n; pNurb = pNurb->next, ++i )
            /**/;

      if( !pNurb )            /* we came to the end of the list */
            return ( EXPP_ReturnPyObjError( PyExc_IndexError,
                                    "index out of range" ) );

      pyo = CurNurb_CreatePyObject( pNurb );    /* make a bpy_curnurb */
      return ( PyObject * ) pyo;

}



/*****************************************************************************/
/* Function:    CurveDeAlloc                                                 */
/* Description: This is a callback function for the BPy_Curve type. It is    */
/*              the destructor function.                                     */
/*****************************************************************************/
static void CurveDeAlloc( BPy_Curve * self )
{
      PyObject_DEL( self );
}

/*****************************************************************************/
/* Function:    CurveGetAttr                                                 */
/* Description: This is a callback function for the BPy_Curve type. It is    */
/*              the function that accesses BPy_Curve "member variables" and  */
/*              methods.                                                     */
/*****************************************************************************/
static PyObject *CurveGetAttr( BPy_Curve * self, char *name )
{                       /* getattr */
      PyObject *attr = Py_None;

      if( strcmp( name, "name" ) == 0 )
            attr = PyString_FromString( self->curve->id.name + 2 );
      if( strcmp( name, "pathlen" ) == 0 )
            attr = PyInt_FromLong( self->curve->pathlen );
      if( strcmp( name, "totcol" ) == 0 )
            attr = PyInt_FromLong( self->curve->totcol );
      if( strcmp( name, "flag" ) == 0 )
            attr = PyInt_FromLong( self->curve->flag );
      if( strcmp( name, "bevresol" ) == 0 )
            attr = PyInt_FromLong( self->curve->bevresol );
      if( strcmp( name, "resolu" ) == 0 )
            attr = PyInt_FromLong( self->curve->resolu );
      if( strcmp( name, "resolv" ) == 0 )
            attr = PyInt_FromLong( self->curve->resolv );
      if( strcmp( name, "width" ) == 0 )
            attr = PyFloat_FromDouble( self->curve->width );
      if( strcmp( name, "ext1" ) == 0 )
            attr = PyFloat_FromDouble( self->curve->ext1 );
      if( strcmp( name, "ext2" ) == 0 )
            attr = PyFloat_FromDouble( self->curve->ext2 );
      if( strcmp( name, "loc" ) == 0 )
            return Curve_getLoc( self );
      if( strcmp( name, "rot" ) == 0 )
            return Curve_getRot( self );
      if( strcmp( name, "size" ) == 0 )
            return Curve_getSize( self );
#if 0
      if( strcmp( name, "numpts" ) == 0 )
            return Curve_getNumPoints( self );
#endif


      if( !attr )
            return ( EXPP_ReturnPyObjError( PyExc_MemoryError,
                                    "couldn't create PyObject" ) );

      if( attr != Py_None )
            return attr;      /* member attribute found, return it */

      /* not an attribute, search the methods table */
      return Py_FindMethod( BPy_Curve_methods, ( PyObject * ) self, name );
}

/*****************************************************************************/
/* Function:    CurveSetAttr                                                 */
/* Description: This is a callback function for the BPy_Curve type. It      */
/*              sets Curve Data attributes (member variables). */
/*****************************************************************************/
static int CurveSetAttr( BPy_Curve * self, char *name, PyObject * value )
{
      PyObject *valtuple;
      PyObject *error = NULL;
      valtuple = Py_BuildValue( "(O)", value );
      /* resolu resolv width ext1 ext2  */
      if( !valtuple )
            return EXPP_ReturnIntError( PyExc_MemoryError,
                                  "CurveSetAttr: couldn't create PyTuple" );

      if( strcmp( name, "name" ) == 0 )
            error = Curve_setName( self, valtuple );
      else if( strcmp( name, "pathlen" ) == 0 )
            error = Curve_setPathLen( self, valtuple );
      else if( strcmp( name, "resolu" ) == 0 )
            error = Curve_setResolu( self, valtuple );
      else if( strcmp( name, "resolv" ) == 0 )
            error = Curve_setResolv( self, valtuple );
      else if( strcmp( name, "width" ) == 0 )
            error = Curve_setWidth( self, valtuple );
      else if( strcmp( name, "ext1" ) == 0 )
            error = Curve_setExt1( self, valtuple );
      else if( strcmp( name, "ext2" ) == 0 )
            error = Curve_setExt2( self, valtuple );
      else if( strcmp( name, "loc" ) == 0 )
            error = Curve_setLoc( self, valtuple );
      else if( strcmp( name, "rot" ) == 0 )
            error = Curve_setRot( self, valtuple );
      else if( strcmp( name, "size" ) == 0 )
            error = Curve_setSize( self, valtuple );

      else {                  /* Error */
            Py_DECREF( valtuple );

            if( ( strcmp( name, "Types" ) == 0 )
                || ( strcmp( name, "Modes" ) == 0 ) )
                  return ( EXPP_ReturnIntError
                         ( PyExc_AttributeError,
                           "constant dictionary -- cannot be changed" ) );

            else
                  return ( EXPP_ReturnIntError
                         ( PyExc_KeyError, "attribute not found" ) );
      }

      Py_DECREF( valtuple );

      if( error != Py_None )
            return -1;
      Py_DECREF( Py_None );
      return 0;
}


/*****************************************************************************/
/* Function:    CurveRepr                                                    */
/* Description: This is a callback function for the BPy_Curve type. It       */
/*              builds a meaninful string to represent curve objects.        */
/*****************************************************************************/
static PyObject *CurveRepr( BPy_Curve * self )
{                       /* used by 'repr' */

      return PyString_FromFormat( "[Curve \"%s\"]",
                            self->curve->id.name + 2 );
}


/*
 * Curve_CreatePyObject
 * constructor to build a py object from blender data 
 */

PyObject *Curve_CreatePyObject( struct Curve * curve )
{
      BPy_Curve *blen_object;

      blen_object = ( BPy_Curve * ) PyObject_NEW( BPy_Curve, &Curve_Type );

      if( blen_object == NULL ) {
            return ( NULL );
      }
      blen_object->curve = curve;
      return ( ( PyObject * ) blen_object );

}

int Curve_CheckPyObject( PyObject * py_obj )
{
      return ( py_obj->ob_type == &Curve_Type );
}


struct Curve *Curve_FromPyObject( PyObject * py_obj )
{
      BPy_Curve *blen_obj;

      blen_obj = ( BPy_Curve * ) py_obj;
      return ( blen_obj->curve );

}



/*
 * NOTE:  this func has been replaced by freedisplist() in the recent
 *        display list refactoring.
 *
 * walk across all objects looking for curves
 *  so we can update their ob's disp list
 */

void update_displists( void *data )
{
#if 0
      Base *base;
      Object *ob;
      unsigned int layer;

      /* background */
      layer = G.scene->lay;

      base = G.scene->base.first;
      while( base ) {
            if( base->lay & layer ) {
                  ob = base->object;

                  if( ELEM( ob->type, OB_CURVE, OB_SURF ) ) {
                        if( ob != G.obedit ) {
                              if( ob->data == data ) {
                                    makeDispList( ob );
                              }
                        }
                  } else if( ob->type == OB_FONT ) {
                        Curve *cu = ob->data;
                        if( cu->textoncurve ) {
                              if( ( ( Curve * ) cu->textoncurve->
                                    data )->key ) {
                                    text_to_curve( ob, 0 );
                                    makeDispList( ob );
                              }
                        }
                  }
            }
            if( base->next == 0 && G.scene->set
                && base == G.scene->base.last )
                  base = G.scene->set->base.first;
            else
                  base = base->next;
      }
#endif
}


Generated by  Doxygen 1.6.0   Back to index